搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学模拟流体输运性质的稳定性分析

陈俊 史琳 王楠 毕胜山

基于分子动力学模拟流体输运性质的稳定性分析

陈俊, 史琳, 王楠, 毕胜山
PDF
导出引用
  • 利用线性响应理论对Ar流体输运参数进行了分子动力学模拟,结果发现:导热系数和黏度会随着自相关积分函数积分时间的增加而产生剧烈波动,而扩散系数却相对稳定. 针对积分稳定性这一问题,对导热系数和黏度中的热流密度和应力张量进行了分解分析,发现含分子间作用力项是影响稳定性的最大因素. 从牛顿力学出发对作用力项的影响机理进行了分析,指明减小这种影响的最主要方法是使在体系进行统计输运参数前达到稳定平衡状态,即最小的预平衡步数应该满足使体系达到该状态下熵最大或者能量最低,并尽量减小温度对体系的影响. 同时,还对模拟盒尺寸、统计步长等因素对积分稳定性的影响进行了分析,给出了保持稳定性的建议.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB227305)和国家自然科学基金(批准号:50976060)资助的课题.
    [1]

    Kubo R 1958 J. Phys. Soc. Jpn. 12 570

    [2]
    [3]

    Callen H B, Greene R F 1952 Phys. Rev. 83 702

    [4]
    [5]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [6]

    Castai G, Ford J, Vivaldi F, Vissher W M 1984 Phys. Rev. Lett. 52 1861

    [7]
    [8]
    [9]

    Poetzsch R H, Bettger H 1994 Phys. Rev. B 50 15757

    [10]
    [11]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [12]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [13]
    [14]

    Che J, Cagin T, Deng W, Goddard W A 2000 J. Chem. Phys. 113 6888

    [15]
    [16]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星、朱长纯 2006 物理学报 55 3552]

    [17]
    [18]

    Ma W G, Wang H D, Zhang X, Takahashi K 2009 Chin. Phys. B 18 2035

    [19]
    [20]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文、曹炳阳、过增元 2009 物理学报 58 7809]

    [21]
    [22]
    [23]

    Nieto-Draghi C, Avalos J B 2003 Mol. Phys. 101 2303

    [24]
    [25]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强、孔宪仁、孙兆伟、王亚辉 2006 物理学报 55 1]

    [26]
    [27]

    Wang H F, Chu W G, Guo Y J, Jin H 2010 Chin. Phys. B 19 076501

    [28]
    [29]

    Terao T, Mller-Plathe F 2005 J. Chem. Phys. 122 081103

    [30]
    [31]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [32]

    Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V 2007 J. Mol. Liq. 134 71

    [33]
    [34]

    Eapen J, Li J, Yip S 2007 Phys. Rev. E 76 062501

    [35]
    [36]
    [37]

    Eapen J, Li J, Yip S 2007 Phys. Rev. Lett. 98 028302

    [38]
    [39]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302

    [40]
    [41]

    Marechal G, Ryckaert J P 1983 Chem. Phys. Lett. 101 548

    [42]
    [43]

    Schoen M, Hoheisel C 1985 Mol. Phys. 56 563

    [44]

    Vogelsan R, Hoheisel C, Ciccotti G 1987 J. Chem. Phys. 86 6371

    [45]
    [46]

    Davis P J, Evans D J 1995 J. Chem. Phys. 103 4261

    [47]
    [48]
    [49]

    McGaughey A J H, Kaviany M 2004 Int. J. Heat Mass Transfer 47 1799

    [50]

    Mahajan S S, Subbarayan G, Sammakia B G 2007 Phys. Rev. E 76 056701

    [51]
    [52]
    [53]

    Kurosaki K, Yano K, Yamada K, Uno M, Yamanaka S 2000 J. Alloys Compd. 311 305

    [54]

    Andrade J D, Stassen H 2004 J. Mol. Liq. 110 169

    [55]
    [56]
    [57]

    Kawamura T, Kangawa Y, Kakimoto K 2007 J. Cryst. Growth 298 251

    [58]

    Liu J F 2005 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘娟芳 2005 博士学位论文 (重庆: 重庆大学)]

    [59]
    [60]

    Mclinden M O, Klein S A, Lemmon E W, Peskin A P 2006 NIST Thermodynamic Properties of Refrigerants and Refrigerants Mixtures Database (Boulder: NIST Ste. Ref. Database Gaithersburg)

    [61]
  • [1]

    Kubo R 1958 J. Phys. Soc. Jpn. 12 570

    [2]
    [3]

    Callen H B, Greene R F 1952 Phys. Rev. 83 702

    [4]
    [5]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [6]

    Castai G, Ford J, Vivaldi F, Vissher W M 1984 Phys. Rev. Lett. 52 1861

    [7]
    [8]
    [9]

    Poetzsch R H, Bettger H 1994 Phys. Rev. B 50 15757

    [10]
    [11]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [12]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [13]
    [14]

    Che J, Cagin T, Deng W, Goddard W A 2000 J. Chem. Phys. 113 6888

    [15]
    [16]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星、朱长纯 2006 物理学报 55 3552]

    [17]
    [18]

    Ma W G, Wang H D, Zhang X, Takahashi K 2009 Chin. Phys. B 18 2035

    [19]
    [20]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文、曹炳阳、过增元 2009 物理学报 58 7809]

    [21]
    [22]
    [23]

    Nieto-Draghi C, Avalos J B 2003 Mol. Phys. 101 2303

    [24]
    [25]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强、孔宪仁、孙兆伟、王亚辉 2006 物理学报 55 1]

    [26]
    [27]

    Wang H F, Chu W G, Guo Y J, Jin H 2010 Chin. Phys. B 19 076501

    [28]
    [29]

    Terao T, Mller-Plathe F 2005 J. Chem. Phys. 122 081103

    [30]
    [31]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [32]

    Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V 2007 J. Mol. Liq. 134 71

    [33]
    [34]

    Eapen J, Li J, Yip S 2007 Phys. Rev. E 76 062501

    [35]
    [36]
    [37]

    Eapen J, Li J, Yip S 2007 Phys. Rev. Lett. 98 028302

    [38]
    [39]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302

    [40]
    [41]

    Marechal G, Ryckaert J P 1983 Chem. Phys. Lett. 101 548

    [42]
    [43]

    Schoen M, Hoheisel C 1985 Mol. Phys. 56 563

    [44]

    Vogelsan R, Hoheisel C, Ciccotti G 1987 J. Chem. Phys. 86 6371

    [45]
    [46]

    Davis P J, Evans D J 1995 J. Chem. Phys. 103 4261

    [47]
    [48]
    [49]

    McGaughey A J H, Kaviany M 2004 Int. J. Heat Mass Transfer 47 1799

    [50]

    Mahajan S S, Subbarayan G, Sammakia B G 2007 Phys. Rev. E 76 056701

    [51]
    [52]
    [53]

    Kurosaki K, Yano K, Yamada K, Uno M, Yamanaka S 2000 J. Alloys Compd. 311 305

    [54]

    Andrade J D, Stassen H 2004 J. Mol. Liq. 110 169

    [55]
    [56]
    [57]

    Kawamura T, Kangawa Y, Kakimoto K 2007 J. Cryst. Growth 298 251

    [58]

    Liu J F 2005 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘娟芳 2005 博士学位论文 (重庆: 重庆大学)]

    [59]
    [60]

    Mclinden M O, Klein S A, Lemmon E W, Peskin A P 2006 NIST Thermodynamic Properties of Refrigerants and Refrigerants Mixtures Database (Boulder: NIST Ste. Ref. Database Gaithersburg)

    [61]
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3527
  • PDF下载量:  679
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-30
  • 修回日期:  2011-06-02
  • 刊出日期:  2011-06-05

基于分子动力学模拟流体输运性质的稳定性分析

  • 1. 清华大学热能工程系,热科学与动力工程教育部重点实验室,北京 100084;
  • 2. 西安交通大学热流科学与工程教育部重点实验室,西安 710049
    基金项目: 

    国家重点基础研究发展计划(批准号:2010CB227305)和国家自然科学基金(批准号:50976060)资助的课题.

摘要: 利用线性响应理论对Ar流体输运参数进行了分子动力学模拟,结果发现:导热系数和黏度会随着自相关积分函数积分时间的增加而产生剧烈波动,而扩散系数却相对稳定. 针对积分稳定性这一问题,对导热系数和黏度中的热流密度和应力张量进行了分解分析,发现含分子间作用力项是影响稳定性的最大因素. 从牛顿力学出发对作用力项的影响机理进行了分析,指明减小这种影响的最主要方法是使在体系进行统计输运参数前达到稳定平衡状态,即最小的预平衡步数应该满足使体系达到该状态下熵最大或者能量最低,并尽量减小温度对体系的影响. 同时,还对模拟盒尺寸、统计步长等因素对积分稳定性的影响进行了分析,给出了保持稳定性的建议.

English Abstract

参考文献 (61)

目录

    /

    返回文章
    返回