搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子增减叠加相干态在热环境中的退相干

张浩亮 贾芳 徐学翔 郭琴 陶向阳 胡利云

光子增减叠加相干态在热环境中的退相干

张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云
PDF
导出引用
  • 研究了由光子增减叠加操作作用于相干态而得量子态的非经典性及其在热环境中的退相干问题. 通过解析导出了Mandel's Q参数, 光子数分布, Wigner函数等讨论其非经典性. 研究表明一阶光子增减相干叠加相干态在相空间总是取负值, 只要满足条件|2z* +-*|21. 基于 Wigner函数的演化积分公式, 解析地推导出了在热环境中Wigner函数的简洁表达式. 研究首次表明: 如果满足t(1/2)ln[(2N+2)/(2N+1)] 得以满足, 一阶光子增减相干叠加相干态在相空间最小值点处Wigner函数分布总存在负部. 此外, 根据 Wigner函数负部体积讨论了其非经典特性.
    • 基金项目: 国家自然科学基金(批准号: 11264018)、 江西省自然科学基金(批准号: 2010GQW0027, 2009GZW0006)、 江西省教育厅科技项目(批准号: GJJ12171) 和江西师范大学青年英才培养计划资助的课题.
    [1]

    Loudon R, Knight P L 1987 J. Mod. Opt. 34 709

    [2]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661 (in Chinese) [徐学翔, 袁洪春, 胡利云 2010 物理学报 59 4661]

    [3]

    Short R, Mandel L 1983 Phys. Rev. Lett. 51 384

    [4]

    Hillery M, O'Connell R F, Scully M O, Wigner E P 1984 Phys. Rep. 106 121

    [5]

    Kenfack A, Życzkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396

    [6]

    Hu L Y, Fan H Y 2008 J. Opt. Soc. Am. B 25 1955

    [7]

    Stobińska M, Milburn G J, Wódkiewicz K 2008 Phys. Rev. A 78 013810

    [8]

    Hu L Y, Zhang Z M 2012 J. Opt. Soc. Am. B 29 529

    [9]

    Hu L Y, Jia F, Zhang Z M 2012 J. Opt. Soc. Am. B 29 1456

    [10]

    Agarwal G S, Tara K 1991 Phys. Rev. A 43 492

    [11]

    Kalamidas D, Gerry C C, Benmoussa A 2008 Phys. Lett. A 372 1937

    [12]

    Xu X X, Yuan H C, Fan H Y 2011 Chin. Phys. B 20 024203

    [13]

    Hu L Y, Xu X X, Wang Z S, Xu X F 2010 Phys. Rev. A 82 043842

    [14]

    Lee S Y, Park J, Ji S W, Ooi C H R, Lee H W 2009 J. Opt. Soc. Am. B 26 1532

    [15]

    Yang Y, Li F L 2009 J. Opt. Soc. Am. B 26 830

    [16]

    Lee S Y, Nha H, 2010 Phys. Rev. A 82 053812

    [17]

    Lee S Y, Ji S W, Kim H J, Nha H 2011 Phys. Rev. A 84 012302

    [18]

    Li H M, Xu X F 2012 Chin. Phys. B 21 024202

    [19]

    Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific & Technical Press) (in Chinese) [范洪义 1997 量子力学表 象与变换论–-狄拉克符号法进展(上海: 上海科学技术出版社)]

    [20]

    Agarwal G S, Tara K 1992 Phys. Rev. A 46 485

    [21]

    Fan H Y 1987 Phys. Lett. A 124 303

    [22]

    Gardner C W, Zoller P 2000 Quantum Noise (Berlin: Springer)

    [23]

    Hu L Y, Fan H Y 2009 Opt. Commun. 282 4379

  • [1]

    Loudon R, Knight P L 1987 J. Mod. Opt. 34 709

    [2]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661 (in Chinese) [徐学翔, 袁洪春, 胡利云 2010 物理学报 59 4661]

    [3]

    Short R, Mandel L 1983 Phys. Rev. Lett. 51 384

    [4]

    Hillery M, O'Connell R F, Scully M O, Wigner E P 1984 Phys. Rep. 106 121

    [5]

    Kenfack A, Życzkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396

    [6]

    Hu L Y, Fan H Y 2008 J. Opt. Soc. Am. B 25 1955

    [7]

    Stobińska M, Milburn G J, Wódkiewicz K 2008 Phys. Rev. A 78 013810

    [8]

    Hu L Y, Zhang Z M 2012 J. Opt. Soc. Am. B 29 529

    [9]

    Hu L Y, Jia F, Zhang Z M 2012 J. Opt. Soc. Am. B 29 1456

    [10]

    Agarwal G S, Tara K 1991 Phys. Rev. A 43 492

    [11]

    Kalamidas D, Gerry C C, Benmoussa A 2008 Phys. Lett. A 372 1937

    [12]

    Xu X X, Yuan H C, Fan H Y 2011 Chin. Phys. B 20 024203

    [13]

    Hu L Y, Xu X X, Wang Z S, Xu X F 2010 Phys. Rev. A 82 043842

    [14]

    Lee S Y, Park J, Ji S W, Ooi C H R, Lee H W 2009 J. Opt. Soc. Am. B 26 1532

    [15]

    Yang Y, Li F L 2009 J. Opt. Soc. Am. B 26 830

    [16]

    Lee S Y, Nha H, 2010 Phys. Rev. A 82 053812

    [17]

    Lee S Y, Ji S W, Kim H J, Nha H 2011 Phys. Rev. A 84 012302

    [18]

    Li H M, Xu X F 2012 Chin. Phys. B 21 024202

    [19]

    Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific & Technical Press) (in Chinese) [范洪义 1997 量子力学表 象与变换论–-狄拉克符号法进展(上海: 上海科学技术出版社)]

    [20]

    Agarwal G S, Tara K 1992 Phys. Rev. A 46 485

    [21]

    Fan H Y 1987 Phys. Lett. A 124 303

    [22]

    Gardner C W, Zoller P 2000 Quantum Noise (Berlin: Springer)

    [23]

    Hu L Y, Fan H Y 2009 Opt. Commun. 282 4379

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2320
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-29
  • 修回日期:  2012-07-26
  • 刊出日期:  2013-01-05

光子增减叠加相干态在热环境中的退相干

  • 1. 江西师范大学物理与通信电子学院, 南昌 330022
    基金项目: 

    国家自然科学基金(批准号: 11264018)、 江西省自然科学基金(批准号: 2010GQW0027, 2009GZW0006)、 江西省教育厅科技项目(批准号: GJJ12171) 和江西师范大学青年英才培养计划资助的课题.

摘要: 研究了由光子增减叠加操作作用于相干态而得量子态的非经典性及其在热环境中的退相干问题. 通过解析导出了Mandel's Q参数, 光子数分布, Wigner函数等讨论其非经典性. 研究表明一阶光子增减相干叠加相干态在相空间总是取负值, 只要满足条件|2z* +-*|21. 基于 Wigner函数的演化积分公式, 解析地推导出了在热环境中Wigner函数的简洁表达式. 研究首次表明: 如果满足t(1/2)ln[(2N+2)/(2N+1)] 得以满足, 一阶光子增减相干叠加相干态在相空间最小值点处Wigner函数分布总存在负部. 此外, 根据 Wigner函数负部体积讨论了其非经典特性.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回