搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

赫兹型微裂纹光场调制增强作用的系统研究

蔡月飞 吕志伟 李森森 王雨雷 朱成禹 林殿阳 何伟明

引用本文:
Citation:

赫兹型微裂纹光场调制增强作用的系统研究

蔡月飞, 吕志伟, 李森森, 王雨雷, 朱成禹, 林殿阳, 何伟明

Systematic studies on the field enhancement effect of Hertzian microcracks

Cai Yue-Fei, Lü Zhi-Wei, Li Sen-Sen, Wang Yu-Lei, Zhu Cheng-Yu, Lin Dian-Yang, He Wei-Ming
PDF
导出引用
  • 通过改变裂纹的倾角、宽度和深度参数,模拟了赫兹型裂纹在不同参数下对光场调制能力的不同. 模拟发现,倾斜角度为20.9°到45°之间的裂纹危害最大,倾角大于45°小于48.2°的裂纹危害也十分大,而倾斜角度为45°时的裂纹危害最小. 对于30°倾角的赫兹型裂纹,一定范围内,赫兹型裂纹深度的增加会导致其光场调制增强能力呈二次方关系增加,但宽度的增加不会使其光场调制增强作用增加. 裂纹深度和宽度的增加可以用来近似裂纹的演化过程,所以裂纹的扩展导致了其光场调制能力的增加,进而导致损伤增长速率的加快,这和e指数损伤增长规律相符.
    In order to study the effect of micro-cracks on the damage growth, the different field enhancements of the Hertzian micro crack are investigated by varying its angle, width, and depth. Simulation results show that the most harmful cracks are those with inclination angles from 20.9° to 45°, and the cracks with an angle less than 45° and larger than 48.2° are also harmful, but the cracks with inclination angle of 45° are the least harmful. Increasing the depth of the Hertzian cracks will lead to their field enhancement factors increasing with a quadratic relationship. However, increasing the width does not make it essential to the increase of its field enhancement ability. The development of micro-cracks can be approximated by increase its depth and width, so the development of cracks will lead to the increase of its light field modulation capability, and also to its damage growth rate to accelerate, following an exponential law.
    [1]

    Demos S G, Kozlowski M R, Staggs M C 2001 International Society for Optics and Photonics Boulder, October 16, 2000 p277

    [2]

    Bloembergen N 1973 Applied Optics 12 661

    [3]

    Genin F Y, Salleo A, Pistor T V 2001 JOSA A 18 2607

    [4]

    Wang Y, Xu Q, Chai L Q, Chen N, Zhu X Q 2005 High Power Laser and Part. Beams 17 67 (in Chinese) [王毅, 许乔, 柴立群 2005 强激光与粒子束 17 67]

    [5]

    Chai L Q, Ge D B, Xu Q 2005 Optical Technique 31 24 (in Chinese) [柴立群, 葛德彪, 许乔 2005 光学技术 31 24]

    [6]

    Tian D B, Yuan X D, Zu X T 2008 High Power Laser and Part. Beams 319 (in Chinese) [田东斌, 袁晓东, 祖小涛 2008 强激光与粒子束 20 319]

    [7]

    Hua J R, Li L, Xiang X 2011 Acta Phys. Sin. 60 044206 (in Chinese) [花金荣, 李莉, 向霞 2011 物理学报 60 044206]

    [8]

    Li L, Xia X, Xiao-Tao Z 2011Chin. Phys. B 20 074209

    [9]

    Zhang L, Chen W, Hu L 2013 Applied Optics 52 980

    [10]

    Rubenchik A M, Feit M D 2002 International Society for Optics and Photonics Boulder 2002 p79

    [11]

    Norton M A, Hrubesh L W, Wu Z 2001 Proc. SPIE. 2001 p4347

    [12]

    Norton M A, Carr A V, Carr C W 2008 International Society for Optics and Photonics Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers Boulder, September 22, 2008 p71321H

    [13]

    Lawn B, Wilshaw R 1975Journal of Materials Science 10 1049

    [14]

    Hamza A V, Siekhaus W J, Rubenchik A M Boulder Damage International Society for Optics and Photonics Boulder, October 01, 2001 p96

    [15]

    Hrubesh L W, Norton M A 2001 LLNL REPORT 2001 UCRL-JC-144295 p1

    [16]

    Yin W, Xu S Z, Zu X T 2009 Atomic Energy Science and Technology 43 860 (in Chinese) [尹伟, 徐世珍, 祖小涛 2009 原子能科学技术 43 860]

    [17]

    Bass I L, Guss G M, Hackel R P 2005 Boulder Damage Symposium XXXVII: Annual Symposium on Optical Materials for High Power Lasers. International Society for Optics and Photonics Boulder, September 19, 2005 p59910C

    [18]

    Gallais L, Cormont P, Rullier J L 2009 Opt. Express 17 p23488

  • [1]

    Demos S G, Kozlowski M R, Staggs M C 2001 International Society for Optics and Photonics Boulder, October 16, 2000 p277

    [2]

    Bloembergen N 1973 Applied Optics 12 661

    [3]

    Genin F Y, Salleo A, Pistor T V 2001 JOSA A 18 2607

    [4]

    Wang Y, Xu Q, Chai L Q, Chen N, Zhu X Q 2005 High Power Laser and Part. Beams 17 67 (in Chinese) [王毅, 许乔, 柴立群 2005 强激光与粒子束 17 67]

    [5]

    Chai L Q, Ge D B, Xu Q 2005 Optical Technique 31 24 (in Chinese) [柴立群, 葛德彪, 许乔 2005 光学技术 31 24]

    [6]

    Tian D B, Yuan X D, Zu X T 2008 High Power Laser and Part. Beams 319 (in Chinese) [田东斌, 袁晓东, 祖小涛 2008 强激光与粒子束 20 319]

    [7]

    Hua J R, Li L, Xiang X 2011 Acta Phys. Sin. 60 044206 (in Chinese) [花金荣, 李莉, 向霞 2011 物理学报 60 044206]

    [8]

    Li L, Xia X, Xiao-Tao Z 2011Chin. Phys. B 20 074209

    [9]

    Zhang L, Chen W, Hu L 2013 Applied Optics 52 980

    [10]

    Rubenchik A M, Feit M D 2002 International Society for Optics and Photonics Boulder 2002 p79

    [11]

    Norton M A, Hrubesh L W, Wu Z 2001 Proc. SPIE. 2001 p4347

    [12]

    Norton M A, Carr A V, Carr C W 2008 International Society for Optics and Photonics Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers Boulder, September 22, 2008 p71321H

    [13]

    Lawn B, Wilshaw R 1975Journal of Materials Science 10 1049

    [14]

    Hamza A V, Siekhaus W J, Rubenchik A M Boulder Damage International Society for Optics and Photonics Boulder, October 01, 2001 p96

    [15]

    Hrubesh L W, Norton M A 2001 LLNL REPORT 2001 UCRL-JC-144295 p1

    [16]

    Yin W, Xu S Z, Zu X T 2009 Atomic Energy Science and Technology 43 860 (in Chinese) [尹伟, 徐世珍, 祖小涛 2009 原子能科学技术 43 860]

    [17]

    Bass I L, Guss G M, Hackel R P 2005 Boulder Damage Symposium XXXVII: Annual Symposium on Optical Materials for High Power Lasers. International Society for Optics and Photonics Boulder, September 19, 2005 p59910C

    [18]

    Gallais L, Cormont P, Rullier J L 2009 Opt. Express 17 p23488

  • [1] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [2] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [3] 张凤国, 刘军, 何安民, 王裴, 王昆, 周洪强, 赵福祺. 层裂损伤孔洞增长模型参数的确定方法及其应用. 物理学报, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527
    [4] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [5] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [6] 白阳, 张丽娟, 廖威, 周海, 张传超, 陈静, 叶亚云, 蒋一岚, 王海军, 栾晓雨, 袁晓东, 郑万国. 熔石英损伤修复坑下游光场调制的数值模拟与实验研究. 物理学报, 2016, 65(2): 024205. doi: 10.7498/aps.65.024205
    [7] 韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理. 高功率激光装置熔石英紫外损伤增长研究. 物理学报, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [8] 蒋勇, 袁晓东, 王海军, 廖威, 刘春明, 向霞, 邱荣, 周强, 高翔, 杨永佳, 郑万国, 祖小涛, 苗心向. 退火对熔石英表面损伤修复点损伤增长的影响. 物理学报, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [9] 马晓波, 王飞, 陈德珍. 亚表面异质缺陷对功能梯度材料表面温度场的影响. 物理学报, 2014, 63(19): 194401. doi: 10.7498/aps.63.194401
    [10] 季乐, 杨盛志, 蔡杰, 李艳, 王晓彤, 张在强, 侯秀丽, 关庆丰. 强流脉冲电子束辐照诱发纯钼表面的损伤效应及结构缺陷. 物理学报, 2013, 62(23): 236103. doi: 10.7498/aps.62.236103
    [11] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱. 物理学报, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [12] 章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 裂纹或气泡对熔石英损伤修复坑场调制的近场模拟. 物理学报, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [13] 李熙斌, 袁晓东, 贺少勃, 吕海兵, 王海军, 向霞, 郑万国. 激光钝化对熔石英修复后损伤性能影响的实验研究. 物理学报, 2012, 61(6): 064401. doi: 10.7498/aps.61.064401
    [14] 花金荣, 李莉, 向霞, 祖小涛. 熔石英亚表面杂质颗粒附近光场调制的三维模拟. 物理学报, 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [15] 陆怀宝, 黎军顽, 倪玉山, 梅继法, 王洪生. 体心立方金属钽Ⅱ型裂纹尖端缺陷萌生的多尺度分析. 物理学报, 2011, 60(10): 106101. doi: 10.7498/aps.60.106101
    [16] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [17] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应. 物理学报, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [18] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [19] 刘照军, 吴国祯. 亚乙基硫脲的表面增强拉曼极化率研究:电磁和电荷转移机制. 物理学报, 2006, 55(12): 6315-6319. doi: 10.7498/aps.55.6315
    [20] 欧发, 魏宝华, 刘翠红. 增强吸收型光双稳临界现象的平均场理论. 物理学报, 1994, 43(5): 707-716. doi: 10.7498/aps.43.707
计量
  • 文章访问数:  5032
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-08-19
  • 刊出日期:  2013-12-05

/

返回文章
返回