搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多芯光子晶体光纤优化掺杂分布实现同相位超模输出

黄莉莉 方晓惠 崔元玲 胡明列 王清月

多芯光子晶体光纤优化掺杂分布实现同相位超模输出

黄莉莉, 方晓惠, 崔元玲, 胡明列, 王清月
PDF
导出引用
  • 本文基于多横模运转的传输速率方程,建立了多芯光子晶体光纤放大器的数值模型. 利用分步傅里叶方法,分析了掺杂浓度分布、耦合强度、抽运功率对于放大器各模式输出功率的影响. 通过对多芯光子晶体光纤掺杂浓度的阶梯设计和纤芯间耦合强度的优化,实现了无需插入其他外加元件,利用光纤本身特性就可以实现选定同相位超模的方法,并且数值计算表明高抽运功率也能够提高放大器输出同相位超模的比例,进一步优化了多芯光子晶体光纤放大器输出脉冲的光束质量.
    • 基金项目: 国家重点基础研究发展规划(批准号:2011CB808101,2010CB327604)、国家自然科学基金(批准号:61108020,61078028,60838004)和高等学校博士学科点专项科研基金(批准号:20110032110056)资助的课题.
    [1]

    Gu C L, Hu M L, Zhang L M, Fan J T, Song Y J, Wang Q Y, Reid T D 2013 Opt. Lett. 38 1820

    [2]

    Wang Y R, Li Y, Wang S J, He S T, Chai L, Wang Q Y, Hu M L 2012 Chinese J. Lasers 39 1203002 (in Chinese) [汪月容, 李毅, 王思佳, 何书通, 柴路, 王清月, 胡明列 2012 中国激光 39 1203002]

    [3]

    Liu F, Li Y, Shi J K, Hu X K, Li J, Li Y F, Xing Q R, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 034210 (in Chinese) [刘丰, 李毅, 石俊凯, 胡晓堃, 李江, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月 2012 物理学报 61 034210]

    [4]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [5]

    Li Y, Liu F, Li Y F, Chai L, Xing Q R, Hu M L, Wang Q Y 2011 Appl. Optics 50 1958

    [6]

    Yang L, Wang C Y 2009 Chin. Phys. B 18 4292

    [7]

    Zhang X, Hu M L, Song Y J, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 1863 (in Chinese) [张鑫, 胡明列, 宋有建, 柴路, 王清月 2010 物理学报 59 1863]

    [8]

    Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 044206 (in Chinese) [张大鹏, 胡明列, 谢辰, 柴路, 王清月 2012 物理学报 61 044206]

    [9]

    Baumgartl M, Lecaplain C, Hideur A, Limpert J, Tnnermann A 2012 Opt. Lett. 37 1640

    [10]

    Eidam T, Hanf S, Seise E, Andersen V T, Gabler T, Wirth C, Schreiber T, Limpert J, Tnnermann A 2010 Opt. Lett. 35 94

    [11]

    Gong M L, Yuan Y Y, Li C, Yan P, Zhang H T, Liao S Y 2007 Opt. Exp. 15 3236

    [12]

    Fang X H, Hu M L, Song Y J, Xie C, Chai L, Wang Q Y 2011 Acta Phys. sin. 60 064208 (in Chinese) [方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月 2011 物理学报 60 064208 ]

    [13]

    Fang X H, Hu M L, Liu B W, Chai L, Wang Q Y, Zheltikov A M 2010 Opt. Lett. 35 2326

    [14]

    Li L, Schlzgen A, Chen S, Temyanko V L, Moloney J V, Peyghambarian N 2006 Opt. Lett. 31 2577

    [15]

    Wrage M, Glas P, Fischer D, Leitner M, Vysotsky D V, Napartovich A P 2000 Opt. Lett. 25 1436

    [16]

    Kurkov A S, Paramonov V M, Dianov E M, Isaev V A, Ivanov G A 2006 Laser Phys. Lett. 3 441

    [17]

    Fang X H, Hu M L, Li Y F, Chai L, Wang Q Y 2009 Acta Phys. Sin. 58 2495 (in Chinese) [方晓惠, 胡明列, 栗岩锋, 柴路, 王清月 2009 物理学报 58 2495]

  • [1]

    Gu C L, Hu M L, Zhang L M, Fan J T, Song Y J, Wang Q Y, Reid T D 2013 Opt. Lett. 38 1820

    [2]

    Wang Y R, Li Y, Wang S J, He S T, Chai L, Wang Q Y, Hu M L 2012 Chinese J. Lasers 39 1203002 (in Chinese) [汪月容, 李毅, 王思佳, 何书通, 柴路, 王清月, 胡明列 2012 中国激光 39 1203002]

    [3]

    Liu F, Li Y, Shi J K, Hu X K, Li J, Li Y F, Xing Q R, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 034210 (in Chinese) [刘丰, 李毅, 石俊凯, 胡晓堃, 李江, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月 2012 物理学报 61 034210]

    [4]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [5]

    Li Y, Liu F, Li Y F, Chai L, Xing Q R, Hu M L, Wang Q Y 2011 Appl. Optics 50 1958

    [6]

    Yang L, Wang C Y 2009 Chin. Phys. B 18 4292

    [7]

    Zhang X, Hu M L, Song Y J, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 1863 (in Chinese) [张鑫, 胡明列, 宋有建, 柴路, 王清月 2010 物理学报 59 1863]

    [8]

    Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 044206 (in Chinese) [张大鹏, 胡明列, 谢辰, 柴路, 王清月 2012 物理学报 61 044206]

    [9]

    Baumgartl M, Lecaplain C, Hideur A, Limpert J, Tnnermann A 2012 Opt. Lett. 37 1640

    [10]

    Eidam T, Hanf S, Seise E, Andersen V T, Gabler T, Wirth C, Schreiber T, Limpert J, Tnnermann A 2010 Opt. Lett. 35 94

    [11]

    Gong M L, Yuan Y Y, Li C, Yan P, Zhang H T, Liao S Y 2007 Opt. Exp. 15 3236

    [12]

    Fang X H, Hu M L, Song Y J, Xie C, Chai L, Wang Q Y 2011 Acta Phys. sin. 60 064208 (in Chinese) [方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月 2011 物理学报 60 064208 ]

    [13]

    Fang X H, Hu M L, Liu B W, Chai L, Wang Q Y, Zheltikov A M 2010 Opt. Lett. 35 2326

    [14]

    Li L, Schlzgen A, Chen S, Temyanko V L, Moloney J V, Peyghambarian N 2006 Opt. Lett. 31 2577

    [15]

    Wrage M, Glas P, Fischer D, Leitner M, Vysotsky D V, Napartovich A P 2000 Opt. Lett. 25 1436

    [16]

    Kurkov A S, Paramonov V M, Dianov E M, Isaev V A, Ivanov G A 2006 Laser Phys. Lett. 3 441

    [17]

    Fang X H, Hu M L, Li Y F, Chai L, Wang Q Y 2009 Acta Phys. Sin. 58 2495 (in Chinese) [方晓惠, 胡明列, 栗岩锋, 柴路, 王清月 2009 物理学报 58 2495]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2091
  • PDF下载量:  697
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-31
  • 修回日期:  2013-09-03
  • 刊出日期:  2014-01-05

多芯光子晶体光纤优化掺杂分布实现同相位超模输出

  • 1. 天津大学精密仪器与光电子工程学院, 光电信息技术科学教育部重点实验室, 天津 300072;
  • 2. 北京工业大学应用数理学院, 北京 100124
    基金项目: 

    国家重点基础研究发展规划(批准号:2011CB808101,2010CB327604)、国家自然科学基金(批准号:61108020,61078028,60838004)和高等学校博士学科点专项科研基金(批准号:20110032110056)资助的课题.

摘要: 本文基于多横模运转的传输速率方程,建立了多芯光子晶体光纤放大器的数值模型. 利用分步傅里叶方法,分析了掺杂浓度分布、耦合强度、抽运功率对于放大器各模式输出功率的影响. 通过对多芯光子晶体光纤掺杂浓度的阶梯设计和纤芯间耦合强度的优化,实现了无需插入其他外加元件,利用光纤本身特性就可以实现选定同相位超模的方法,并且数值计算表明高抽运功率也能够提高放大器输出同相位超模的比例,进一步优化了多芯光子晶体光纤放大器输出脉冲的光束质量.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回