搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带海洋与中低纬大气相互作用的信息传输特征分析

张志森 封国林 龚志强 吴浩

热带海洋与中低纬大气相互作用的信息传输特征分析

张志森, 封国林, 龚志强, 吴浩
PDF
导出引用
导出核心图
  • 基于传递熵概念和方法定义气象场的信息源特征度、信息汇特征度和信息传输平衡特征度. 使用海表温度和高度场资料计算海气相互作用过程中的信息传递. 侧重分析赤道中东太平洋(20°S-20°N,170°E-100°W)与热带地区、北半球和南半球中高纬度地区大气之间的信息传递,给出信息传递的区域和全球分布特征;并提取海表温度指数和高度场指数分析赤道中东太平洋与大气信息传递特征的季节变化和年代际变化. 研究结果表明,海洋信息源主要分布在热带地区,大气信息汇主要分布在中纬度地区,从热带地区到中纬度地区,海洋对大气的强迫作用在减弱,而大气对海洋的强迫作用在增强;不同区域不同层次的高度场对赤道中东太平洋海表温度有着不同的响应,热带中东太平洋上空高度场最大延迟为4 个月. 欧亚大陆中部上空和北美大陆上空高度场均随时间延迟呈现波动性变化:欧亚大陆中部上空高度场随时间延迟呈现增强的趋势,而北美大陆上空高度场随时间延迟呈现减弱的趋势. 海表温度指数对热带中东太平洋上空850 hPa和欧亚大陆中部上空500 hPa高度场指数的传递熵以2000 s 最弱,而海表温度指数对北美大陆上空700 hPa高度场指数的传递熵以2000 s最强. 表明不同年代际背景下不同区域大气对赤道中东太平洋海表温度异常的响应是不同的. 然而不同季节的响应却十分相似:冬季最强,秋季次之,春季再次,夏季最弱.
    • 基金项目: 国家自然科学基金(批准号:40930952,411075067)、全球变化研究国家重大科学研究计划(批准号:2012CB955902)、国家重点基础研究发展计划(批准号:2013CB430204)和公益性行业气象科研专项基金(批准号:GYHY201106016,GYHY201106015)资助的课题.
    [1]

    Peixoto J P, Oort A H 1992 Physics of Climate (New York: American Institute of Physics Press) p30

    [2]

    Wu G X, Li J P, Zhou T J, Lu R Y, Yu Y Q, Zhu J, Mu M, Duan A M, Ren R C, Ding Y H, Li W J, He J H, Wang F, Yu W D, Qiao F L, Yuan D L, Qi Y Q 2006 Advances in Earth Science 21 1109 (in Chinese) [吴国雄, 李建平, 周天军, 陆日宇, 俞永强, 朱江, 穆 穆, 段安民, 任荣彩, 丁一汇, 李维京, 何金海, 王凡, 于卫东, 乔方利, 袁东亮, 齐义泉 2006 地球科学进展 21 1109]

    [3]

    Ganachaud A, Wunsch C 2000 Nature 408 453

    [4]

    Walker G T 1923 Memoirs of the Indian Meteorological Department 24 75

    [5]

    Walker G T 1924 Memoirs of the Indian Meteorological Department 24 275

    [6]

    Walker G T 1928 Memories of the Royal Meteorological Society 2 97

    [7]

    Bjerknes J 1966 Tellus 18 20

    [8]

    Bjerknes J 1969 Monthly Weather Review 97 163

    [9]

    Klein S A, Soden B J, Lau N C 1999 J. Climate 12 917

    [10]

    Venzke S, Latif M, Villwock A 2000 J. Climate 13 1371

    [11]

    Saji N H, Goswami B H, Vinayachandran P N, Yamagata T 1999 Nature 401 360

    [12]

    Moura A D, Shukla J 1981 J. Atmosph. Sci. 38 2653

    [13]

    Philander S G H, Pacanowski R C 1986 Nature 322 251

    [14]

    Zebiak S E 1993 J. Climate 6 1567

    [15]

    Carton J A, Huang B 1994 J. Phys. Oceanography 24 888

    [16]

    Hoerling M P, Kumar A 2002 J. Climate 15 2184

    [17]

    Alexander M A, Bladé I, Newman M, Lanzante J R, Lau N C, Scott J D 2002 J. Climate 15 2205

    [18]

    Wang C Z, Xie S P, Carton J A 2004 Earth Climate: The Ocean-Atmosphere Interaction (Washington D.C.: AGU) p121

    [19]

    Su H, Neelin J D, Meyerson J E 2005 J. Climate 18 4195

    [20]

    Yang J L, Liu Q Y, Liu Z Y 2010 J. Climate 23 5889

    [21]

    Zheng J, Liu Q Y, Wang C Z, Zheng X T 2012 Climate Dyn. 40 2023

    [22]

    Scaife A A, Kucharski F, Folland C K, Kinter J, Brönnimann S, Fereday D, Fischer A M, Grainger S, Jin E K, Kang I S, Knight J R, Kusunoki S, Lau N C, Nath M J, Nakaegawa T, Pegion P, Schubert S, Sporyshev P, Syktus J, Yoon J H, Zeng N, Zhou J 2009 Climate Dyn. 33 603

    [23]

    Zhou T J, Wu B, Scaife A A, Brönnimann S, Cherchi A, Fereday D, Fischer A M, Folland C K, Jin K E, Kinter J, Knight J R, Kucharski F, Kusunoki S, Lau N C, Li L J, Nath M J, Nakaegawa T, Navarra A, Pegion P, Rozanov E, Schubert S, Sporyshev P, Voldoire A, Wen X Y, Yoon J H, Zeng N 2009 Climate Dyn. 33 1051

    [24]

    Zhou T J, Wu B, Wang B 2009 J. Climate 22 1159

    [25]

    Wallace J M, Jiang Q 1987 Atmospheric and Oceanic Variability (London: Royal Meteorological Society) p17

    [26]

    Cayan D R 1992 J. Phys. Oceanography 22 859

    [27]

    Feng A X, Gong Z Q, Wang Q G, Sun S P, Feng G L 2011 Acta Pyhs. Sin. 60 059205 (in Chinese) [冯爱霞, 龚志强, 王启光, 孙树鹏, 封国林 2011 物理学报 60 059205]

    [28]

    Verdes P F 2005 Phys. Rev. E 72 026222

    [29]

    Kleeman R 2007 J. Atmos Sci. 64 1005

    [30]

    Hannisdal B, Peters S E 2011 Science 334 1121

    [31]

    Sharma S D, Ramesh D S, Bapanayya C, Raju P A 2012 J. Geophys. Res. 117 D13110

    [32]

    Zhang Z S, Gong Z Q, Zhi R 2013 Acta Pyhs. Sin. 62 129203 (in Chinese) [张志森, 龚志强, 支蓉 2013 物理学报 62 129203]

    [33]

    Schreiber T 2000 Phys. Rev. Lett. 85 461

    [34]

    Michelis D, Consolini G, Materassi M, Tozzi R 2011 J. Geophys. Res. 116 A08225

    [35]

    Zhang X H, Yu Y Q, Liu H 1998 J. Atmos. Sci. 22 511 (in Chinese) [张学洪, 俞永强, 刘辉 1998 大气科学 22 511]

    [36]

    Zhou T J, Yu R C, Gao Y Q, Helge D 2006 Acta Meteor. Sin. 64 1 (in Chinese) [周天军, 宇如聪, 郜永琪, Helge Drange 2006 气象学报 64 1]

    [37]

    Gong Z Q, Zhi R, Hou W, Wang X J, Feng G L 2012 Acta Pyhs. Sin. 61 029202 (in Chinese) [龚志强, 支蓉, 侯威, 王晓娟, 封国林 2012 物理学报 61 029202]

    [38]

    Gong Z Q, Wang X J, Zhi R, Feng A X 2011 Chin. Pyhs. B 20 079201

    [39]

    Zhang Z S, Gong Z Q, Zhi R, Feng G L, Hu J G 2011 Chin. Pyhs. B 20 019201

    [40]

    Wang X J, Zhi R, He W P, Gong Z Q 2012 Chin. Phys. B 21 029201

    [41]

    Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta Pyhs. Sin. 50 606 (in Chinese) [封国林, 戴新刚, 王爱慧, 丑纪范 2001 物理学报 50 606]

    [42]

    He W P, Feng G L, Dong W J, Li J P 2006 Acta Pyhs. Sin. 55 969 (in Chinese) [何文平, 封国林, 董文杰, 李建平 2006 物理学报 55 969]

    [43]

    Tokinaga H, Xie S P, Deser C, Kosaka Y, Okumura Y M 2012 Nature 491 439

  • [1]

    Peixoto J P, Oort A H 1992 Physics of Climate (New York: American Institute of Physics Press) p30

    [2]

    Wu G X, Li J P, Zhou T J, Lu R Y, Yu Y Q, Zhu J, Mu M, Duan A M, Ren R C, Ding Y H, Li W J, He J H, Wang F, Yu W D, Qiao F L, Yuan D L, Qi Y Q 2006 Advances in Earth Science 21 1109 (in Chinese) [吴国雄, 李建平, 周天军, 陆日宇, 俞永强, 朱江, 穆 穆, 段安民, 任荣彩, 丁一汇, 李维京, 何金海, 王凡, 于卫东, 乔方利, 袁东亮, 齐义泉 2006 地球科学进展 21 1109]

    [3]

    Ganachaud A, Wunsch C 2000 Nature 408 453

    [4]

    Walker G T 1923 Memoirs of the Indian Meteorological Department 24 75

    [5]

    Walker G T 1924 Memoirs of the Indian Meteorological Department 24 275

    [6]

    Walker G T 1928 Memories of the Royal Meteorological Society 2 97

    [7]

    Bjerknes J 1966 Tellus 18 20

    [8]

    Bjerknes J 1969 Monthly Weather Review 97 163

    [9]

    Klein S A, Soden B J, Lau N C 1999 J. Climate 12 917

    [10]

    Venzke S, Latif M, Villwock A 2000 J. Climate 13 1371

    [11]

    Saji N H, Goswami B H, Vinayachandran P N, Yamagata T 1999 Nature 401 360

    [12]

    Moura A D, Shukla J 1981 J. Atmosph. Sci. 38 2653

    [13]

    Philander S G H, Pacanowski R C 1986 Nature 322 251

    [14]

    Zebiak S E 1993 J. Climate 6 1567

    [15]

    Carton J A, Huang B 1994 J. Phys. Oceanography 24 888

    [16]

    Hoerling M P, Kumar A 2002 J. Climate 15 2184

    [17]

    Alexander M A, Bladé I, Newman M, Lanzante J R, Lau N C, Scott J D 2002 J. Climate 15 2205

    [18]

    Wang C Z, Xie S P, Carton J A 2004 Earth Climate: The Ocean-Atmosphere Interaction (Washington D.C.: AGU) p121

    [19]

    Su H, Neelin J D, Meyerson J E 2005 J. Climate 18 4195

    [20]

    Yang J L, Liu Q Y, Liu Z Y 2010 J. Climate 23 5889

    [21]

    Zheng J, Liu Q Y, Wang C Z, Zheng X T 2012 Climate Dyn. 40 2023

    [22]

    Scaife A A, Kucharski F, Folland C K, Kinter J, Brönnimann S, Fereday D, Fischer A M, Grainger S, Jin E K, Kang I S, Knight J R, Kusunoki S, Lau N C, Nath M J, Nakaegawa T, Pegion P, Schubert S, Sporyshev P, Syktus J, Yoon J H, Zeng N, Zhou J 2009 Climate Dyn. 33 603

    [23]

    Zhou T J, Wu B, Scaife A A, Brönnimann S, Cherchi A, Fereday D, Fischer A M, Folland C K, Jin K E, Kinter J, Knight J R, Kucharski F, Kusunoki S, Lau N C, Li L J, Nath M J, Nakaegawa T, Navarra A, Pegion P, Rozanov E, Schubert S, Sporyshev P, Voldoire A, Wen X Y, Yoon J H, Zeng N 2009 Climate Dyn. 33 1051

    [24]

    Zhou T J, Wu B, Wang B 2009 J. Climate 22 1159

    [25]

    Wallace J M, Jiang Q 1987 Atmospheric and Oceanic Variability (London: Royal Meteorological Society) p17

    [26]

    Cayan D R 1992 J. Phys. Oceanography 22 859

    [27]

    Feng A X, Gong Z Q, Wang Q G, Sun S P, Feng G L 2011 Acta Pyhs. Sin. 60 059205 (in Chinese) [冯爱霞, 龚志强, 王启光, 孙树鹏, 封国林 2011 物理学报 60 059205]

    [28]

    Verdes P F 2005 Phys. Rev. E 72 026222

    [29]

    Kleeman R 2007 J. Atmos Sci. 64 1005

    [30]

    Hannisdal B, Peters S E 2011 Science 334 1121

    [31]

    Sharma S D, Ramesh D S, Bapanayya C, Raju P A 2012 J. Geophys. Res. 117 D13110

    [32]

    Zhang Z S, Gong Z Q, Zhi R 2013 Acta Pyhs. Sin. 62 129203 (in Chinese) [张志森, 龚志强, 支蓉 2013 物理学报 62 129203]

    [33]

    Schreiber T 2000 Phys. Rev. Lett. 85 461

    [34]

    Michelis D, Consolini G, Materassi M, Tozzi R 2011 J. Geophys. Res. 116 A08225

    [35]

    Zhang X H, Yu Y Q, Liu H 1998 J. Atmos. Sci. 22 511 (in Chinese) [张学洪, 俞永强, 刘辉 1998 大气科学 22 511]

    [36]

    Zhou T J, Yu R C, Gao Y Q, Helge D 2006 Acta Meteor. Sin. 64 1 (in Chinese) [周天军, 宇如聪, 郜永琪, Helge Drange 2006 气象学报 64 1]

    [37]

    Gong Z Q, Zhi R, Hou W, Wang X J, Feng G L 2012 Acta Pyhs. Sin. 61 029202 (in Chinese) [龚志强, 支蓉, 侯威, 王晓娟, 封国林 2012 物理学报 61 029202]

    [38]

    Gong Z Q, Wang X J, Zhi R, Feng A X 2011 Chin. Pyhs. B 20 079201

    [39]

    Zhang Z S, Gong Z Q, Zhi R, Feng G L, Hu J G 2011 Chin. Pyhs. B 20 019201

    [40]

    Wang X J, Zhi R, He W P, Gong Z Q 2012 Chin. Phys. B 21 029201

    [41]

    Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta Pyhs. Sin. 50 606 (in Chinese) [封国林, 戴新刚, 王爱慧, 丑纪范 2001 物理学报 50 606]

    [42]

    He W P, Feng G L, Dong W J, Li J P 2006 Acta Pyhs. Sin. 55 969 (in Chinese) [何文平, 封国林, 董文杰, 李建平 2006 物理学报 55 969]

    [43]

    Tokinaga H, Xie S P, Deser C, Kosaka Y, Okumura Y M 2012 Nature 491 439

  • [1] 王闪闪, 管玉平, Li Zhi-Jin, Chao Yi, 黄建平. 黑潮及其延伸区海表温度变化特征与大气环流相关性的初步分析. 物理学报, 2012, 61(16): 169201. doi: 10.7498/aps.61.169201
    [2] 刘晓云, 王劲松, 李栋梁, 岳平, 李耀辉, 姚玉璧. 黄土高原中部秋季干湿的年际和年代际环流异常特征及与海温的多尺度相关性研究. 物理学报, 2013, 62(21): 219202. doi: 10.7498/aps.62.219202
    [3] 王 蕾, 汪芙平, 王赞基. 一种新型的混沌伪随机数发生器. 物理学报, 2006, 55(8): 3964-3968. doi: 10.7498/aps.55.3964
    [4] 宋克慧. 利用Λ型原子与双模腔场的相互作用进行量子信息处理. 物理学报, 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [5] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [6] 庄松林, 郑权. 部分相干信息处理中的逆源问题. 物理学报, 1985, 34(4): 439-446. doi: 10.7498/aps.34.439
    [7] 龚志强, 冯爱霞, 王启光, 黄琰. 全球温度场信息熵的时空特征分析. 物理学报, 2011, 60(9): 099204. doi: 10.7498/aps.60.099204
    [8] 娄平, 周宗立, 章国顺. 相互作用突然开启后的反铁磁海森伯模型. 物理学报, 2011, 60(3): 031101. doi: 10.7498/aps.60.031101
    [9] 邢修三. 论动态信息理论. 物理学报, 2014, 63(23): 230201. doi: 10.7498/aps.63.230201
    [10] 吕鑫. 相干与路径信息. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191684
    [11] 吕鑫. 相干与路径信息. 物理学报, 2020, 69(7): 1-6. doi: 10.7498/aps.69.20191084
    [12] 赵宗清, 丁永坤, 谷渝秋, 王向贤, 洪 伟, 王 剑, 郝轶聃, 袁永腾, 蒲以康. 超短超强激光与铜靶相互作用产生Kα源的蒙特卡罗模拟. 物理学报, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [13] 赵辽英, 吕步云, 厉小润, 陈淑涵. 基于尺度不变特征变换和区域互信息优化的多源遥感图像配准. 物理学报, 2015, 64(12): 124204. doi: 10.7498/aps.64.124204
    [14] 王彦辉, 夏云杰. 具有Dzyaloshinskii-Moriya相互作用的三量子比特海森伯模型中的对纠缠. 物理学报, 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [15] 张英丽, 周斌. 具有Dzyaloshinskii-Moriya相互作用的四量子比特海森堡XXZ模型中的热纠缠. 物理学报, 2011, 60(12): 120301. doi: 10.7498/aps.60.120301
    [16] 刘贵艳, 毛竹, 周斌. 具有次近邻相互作用的五量子比特XXZ海森伯自旋链的热纠缠. 物理学报, 2018, 67(2): 020301. doi: 10.7498/aps.67.20171641
    [17] 卢学坤, 郝平海, 贺仲卿, 侯晓远, 丁训民. P与GaAs(100)表面相互作用的温度效应. 物理学报, 1992, 41(10): 1728-1736. doi: 10.7498/aps.41.1728
    [18] 谷云鹏, 宫 野, 孙继忠. 颗粒与交流电弧等离子体温度场的相互作用. 物理学报, 1999, 48(6): 1078-1085. doi: 10.7498/aps.48.1078
    [19] 王之江. 关于光学信息量. 物理学报, 1964, 104(11): 1180-1181. doi: 10.7498/aps.20.1180
    [20] 邢修三. 非平衡统计信息理论. 物理学报, 2004, 53(9): 2852-2863. doi: 10.7498/aps.53.2852
  • 引用本文:
    Citation:
计量
  • 文章访问数:  523
  • PDF下载量:  570
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-31
  • 修回日期:  2013-09-29
  • 刊出日期:  2014-01-20

热带海洋与中低纬大气相互作用的信息传输特征分析

  • 1. 兰州大学大气科学学院, 兰州 730000;
  • 2. 国家气候中心, 北京 100081
    基金项目: 

    国家自然科学基金(批准号:40930952,411075067)、全球变化研究国家重大科学研究计划(批准号:2012CB955902)、国家重点基础研究发展计划(批准号:2013CB430204)和公益性行业气象科研专项基金(批准号:GYHY201106016,GYHY201106015)资助的课题.

摘要: 基于传递熵概念和方法定义气象场的信息源特征度、信息汇特征度和信息传输平衡特征度. 使用海表温度和高度场资料计算海气相互作用过程中的信息传递. 侧重分析赤道中东太平洋(20°S-20°N,170°E-100°W)与热带地区、北半球和南半球中高纬度地区大气之间的信息传递,给出信息传递的区域和全球分布特征;并提取海表温度指数和高度场指数分析赤道中东太平洋与大气信息传递特征的季节变化和年代际变化. 研究结果表明,海洋信息源主要分布在热带地区,大气信息汇主要分布在中纬度地区,从热带地区到中纬度地区,海洋对大气的强迫作用在减弱,而大气对海洋的强迫作用在增强;不同区域不同层次的高度场对赤道中东太平洋海表温度有着不同的响应,热带中东太平洋上空高度场最大延迟为4 个月. 欧亚大陆中部上空和北美大陆上空高度场均随时间延迟呈现波动性变化:欧亚大陆中部上空高度场随时间延迟呈现增强的趋势,而北美大陆上空高度场随时间延迟呈现减弱的趋势. 海表温度指数对热带中东太平洋上空850 hPa和欧亚大陆中部上空500 hPa高度场指数的传递熵以2000 s 最弱,而海表温度指数对北美大陆上空700 hPa高度场指数的传递熵以2000 s最强. 表明不同年代际背景下不同区域大气对赤道中东太平洋海表温度异常的响应是不同的. 然而不同季节的响应却十分相似:冬季最强,秋季次之,春季再次,夏季最弱.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回