搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si掺杂HfO2薄膜的铁电和反铁电性质

周大雨 徐进

Si掺杂HfO2薄膜的铁电和反铁电性质

周大雨, 徐进
PDF
导出引用
  • 通过改变Si 掺杂量制备出了具有显著铁电和反铁电特征的HfO2 纳米薄膜,对其电滞回线、电容-电压和漏电流-电压特性以及物相温度稳定性进行了对比研究. 反铁电薄膜的介电系数大于铁电薄膜,在电场加载和减载过程中发生的可逆反铁电-铁电相变导致了双电滞回线的出现,在室温至185℃的测试温度范围内未出现反铁电顺电相变. 在电流-电压特性测量时观察到的负微分电阻效应归因于极化弛豫等慢响应机理的贡献.
    • 基金项目: 国家自然科学基金(批准号:51272034)和电子薄膜与集成器件国家重点实验室开放基金(批准号:KFJJ201101)资助的课题.
    [1]

    Wilk G D, Wallace R M, Anthony J M 2001 J. Appl. Phys. 89 5243

    [2]

    Choi J H, Mao Y, Chang J P 2011 Mater. Sci. Eng. R. 72 97

    [3]
    [4]
    [5]

    Bauer A J, Lemberger M, Erlbacher T, Weinreich W 2008 Materials Science Forum 573-574 165

    [6]
    [7]

    Bscke T S, Mller J, Bruhaus D, Schrder U, Bttger U 2011 Appl. Phys. Lett. 99 102903

    [8]
    [9]

    Zhou D Y, Mller J, Xu J, Knebel S, Bruhaus D, Schrder U 2012 Appl. Phys. Lett. 100 082905

    [10]
    [11]

    Schroeder U, Mueller S, Mueller J, Yurchuk E, Martin D, Adelmann C, Schloesser T, Bentum R, Mikolajick T 2013 ECS J. Solid State Sci. Technol. 2 N69

    [12]
    [13]

    Mller J, Bscke T S, Schrder U, Mueller S, Bruhaus D, Bttger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318

    [14]
    [15]

    Fujisaki Y 2013 Jpn. J. Appl. Phys. 52 040001

    [16]
    [17]

    Mller J, Bscke T S, Schrder U, Hoffmann R, Mikolajick T, Frey L 2012 IEEE Electron Device Lett. 33 185

    [18]
    [19]

    Bscke T S, Teichert S, Bruhaus D, Mller J, Schrder U, Bttger U, Mikolajick T 2011 Appl. Phys. Lett. 99 112904

    [20]
    [21]

    Kim K, Lee S 2006 J. Appl. Phys. 100 051604

    [22]
    [23]

    Kato Y, Kaneko Y, Tanaka H, Kaibara K, Koyama S, Isogai K, Yamada T, Shimada Y 2007 Jpn. J. Appl. Phys. 46 2157

    [24]

    Zhou D Y, Xu J, Li Q, Guan Y, Cao F, Dong X L, Mller J, Schenk T, Schrder U 2013 Appl. Phys. Lett. 103 192904

    [25]
    [26]

    Yang T Q, Yao X, Zhang L Y 2000 J. Inorg. Mater. 15 807 (in Chinese)[杨同青, 姚熹, 张良莹 2000 无机材料学报 15 807]

    [27]
    [28]

    Zhao X, Vanderbilt D 2002 Phys. Rev. B 65 233106

    [29]
    [30]
    [31]

    Maity A K, Lee J Y, Sen A, Maiti H S 2004 Jpn. J. Appl. Phys. 43 7155

    [32]
    [33]

    Watanabe K, Hartmann A J, Lamb R N, Scott J F 1998 J. Appl. Phys. 84 2170

    [34]

    Scott J F, Melnick B M, Cuchiaro J D, Zuleeg R, Araujo C A, McMillan L D, Scott M C 1994 Integr. Ferroelectr. 4 85

    [35]
    [36]
    [37]

    Dawber M, Scott J F 2004 J. Phys. : Condens. Matter 16 L515

    [38]

    Waser R, Klee M 1992 Integr. Ferroelectr. 2 23

    [39]
  • [1]

    Wilk G D, Wallace R M, Anthony J M 2001 J. Appl. Phys. 89 5243

    [2]

    Choi J H, Mao Y, Chang J P 2011 Mater. Sci. Eng. R. 72 97

    [3]
    [4]
    [5]

    Bauer A J, Lemberger M, Erlbacher T, Weinreich W 2008 Materials Science Forum 573-574 165

    [6]
    [7]

    Bscke T S, Mller J, Bruhaus D, Schrder U, Bttger U 2011 Appl. Phys. Lett. 99 102903

    [8]
    [9]

    Zhou D Y, Mller J, Xu J, Knebel S, Bruhaus D, Schrder U 2012 Appl. Phys. Lett. 100 082905

    [10]
    [11]

    Schroeder U, Mueller S, Mueller J, Yurchuk E, Martin D, Adelmann C, Schloesser T, Bentum R, Mikolajick T 2013 ECS J. Solid State Sci. Technol. 2 N69

    [12]
    [13]

    Mller J, Bscke T S, Schrder U, Mueller S, Bruhaus D, Bttger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318

    [14]
    [15]

    Fujisaki Y 2013 Jpn. J. Appl. Phys. 52 040001

    [16]
    [17]

    Mller J, Bscke T S, Schrder U, Hoffmann R, Mikolajick T, Frey L 2012 IEEE Electron Device Lett. 33 185

    [18]
    [19]

    Bscke T S, Teichert S, Bruhaus D, Mller J, Schrder U, Bttger U, Mikolajick T 2011 Appl. Phys. Lett. 99 112904

    [20]
    [21]

    Kim K, Lee S 2006 J. Appl. Phys. 100 051604

    [22]
    [23]

    Kato Y, Kaneko Y, Tanaka H, Kaibara K, Koyama S, Isogai K, Yamada T, Shimada Y 2007 Jpn. J. Appl. Phys. 46 2157

    [24]

    Zhou D Y, Xu J, Li Q, Guan Y, Cao F, Dong X L, Mller J, Schenk T, Schrder U 2013 Appl. Phys. Lett. 103 192904

    [25]
    [26]

    Yang T Q, Yao X, Zhang L Y 2000 J. Inorg. Mater. 15 807 (in Chinese)[杨同青, 姚熹, 张良莹 2000 无机材料学报 15 807]

    [27]
    [28]

    Zhao X, Vanderbilt D 2002 Phys. Rev. B 65 233106

    [29]
    [30]
    [31]

    Maity A K, Lee J Y, Sen A, Maiti H S 2004 Jpn. J. Appl. Phys. 43 7155

    [32]
    [33]

    Watanabe K, Hartmann A J, Lamb R N, Scott J F 1998 J. Appl. Phys. 84 2170

    [34]

    Scott J F, Melnick B M, Cuchiaro J D, Zuleeg R, Araujo C A, McMillan L D, Scott M C 1994 Integr. Ferroelectr. 4 85

    [35]
    [36]
    [37]

    Dawber M, Scott J F 2004 J. Phys. : Condens. Matter 16 L515

    [38]

    Waser R, Klee M 1992 Integr. Ferroelectr. 2 23

    [39]
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2642
  • PDF下载量:  867
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-28
  • 修回日期:  2014-02-27
  • 刊出日期:  2014-06-05

Si掺杂HfO2薄膜的铁电和反铁电性质

  • 1. 大连理工大学材料科学与工程学院, 大连 116024;
  • 2. 大连东软信息学院电子工程系, 大连 116023
    基金项目: 

    国家自然科学基金(批准号:51272034)和电子薄膜与集成器件国家重点实验室开放基金(批准号:KFJJ201101)资助的课题.

摘要: 通过改变Si 掺杂量制备出了具有显著铁电和反铁电特征的HfO2 纳米薄膜,对其电滞回线、电容-电压和漏电流-电压特性以及物相温度稳定性进行了对比研究. 反铁电薄膜的介电系数大于铁电薄膜,在电场加载和减载过程中发生的可逆反铁电-铁电相变导致了双电滞回线的出现,在室温至185℃的测试温度范围内未出现反铁电顺电相变. 在电流-电压特性测量时观察到的负微分电阻效应归因于极化弛豫等慢响应机理的贡献.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回