搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变

蒋招绣 辛铭之 申海艇 王永刚 聂恒昌 刘雨生

多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变

蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生
PDF
导出引用
  • 通过添加造孔剂的方法制备了四种不同孔隙率未极化PZT95/5铁电陶瓷. 采用非接触式的数字散斑相关性分析(digital image correltation, DIC)全场应变光学测量技术, 对多孔未极化PZT95/5 铁电陶瓷开展了单轴压缩实验研究, 讨论了孔隙率对未极化PZT95/5铁电陶瓷的力学响应与畴变、相变行为的影响. 多孔未极化PZT95/5铁电陶瓷的单轴压缩应力-应变关系呈现出类似于泡沫或蜂窝材料的三阶段变形特征, 其变形机理主要归因于畴变和相变的共同作用, 与微孔洞塌缩过程无关. 多孔未极化PZT95/5铁电陶瓷的弹性模量、压缩强度都随着孔隙率的增加而明显降低, 而孔隙率对断裂应变的影响较小. 预制的微孔洞没有改善未极化PZT95/5铁电陶瓷材料的韧性, 这是因为单轴压缩下未极化PZT95/5铁电陶瓷的断裂机理是轴向劈裂破坏, 微孔洞对劈裂裂纹传播没有起到阻碍和分叉作用. 准静态单轴压缩下多孔未极化PZT95/5铁电陶瓷畴变和相变开始的临界应力都随着孔隙率的增大而呈线性衰减, 但相变开始的临界体积应变却不依赖孔隙率.
    • 基金项目: 国家自然科学基金(批准号:11272164和11472142)和宁波大学王宽诚幸福基金和教育基金会资助的课题.
    [1]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [2]

    Wang Y L 2003 Properties and Application of Functional Ceramics(Beijing: Science Press) (in Chinese) [王永龄 2003 功能陶瓷性能与应用(北京: 科学出版社)]

    [3]

    Zeuch D H, Montgomery S T and Holcomb D J 2000 J. Mater. Res. 15 689

    [4]

    Zeuch D H, Montgomery S T and Holcomb D J 1999 J. Mater. Res. 14 1814

    [5]

    Avdeev M, Jorgensen J D, Short S, Samara G A, Venturini E L, Yang P, Morosin B 2006 Phys. Rev. B 73 064105

    [6]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [7]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [8]

    Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Jo H R, Valadez J C, Lynch C S 2014 Appl. Phys. Lett. 104 212901

    [9]

    Zhang F P, He H L, Liu G M, Liu Y S, Yu Y, Wang Y G 2013 J. Appl. Phys. 113 183501

    [10]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701]

    [11]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 物理学报 55 2584]

    [12]

    Nie H C, Dong X L, Feng N B, Chen X F, Wang G S, Gu Y, He H L, Liu Y S 2011 Mater. Res. Bull. 46 1243

    [13]

    Feng N B, Gu Y, Liu Y S, Nie H C, Chen X F, Wang G S, He H L, Dong X L 2010 Acta Phys. Sin. 59 8897 (in Chinese) [冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林 2010 物理学报 59 8897]

    [14]

    Zeng T, Dong X L, He H L, Chen X F, Yao C H 2007 Phys. Stat. Sol. 204 1216

    [15]

    Nie H C, Dong X L, Chen X F, Wang G S, He H L 2014 Mater. Res. Bull. 51 167

    [16]

    Lan C H, Peng Y F, Long J D, Wang Q, Wang W D 2011 Chin. Phys. Lett. 28 088301

    [17]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [18]

    Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H, Olson W R 2001 J. Am. Ceram. Soc. 84 1260

    [19]

    Wang Z Z, Jiang Y X, Zhang P, Wang X Z, He H L 2014 Chin. Phys. Lett. 31 077703

    [20]

    Sutton M A, Orteu J J, Schreier HW 2009 Imgae Correlation for Shape, Motion, and Deformation Measurements p81(New York: Springer)

    [21]

    Gibson L J, Ashby M F 1997 Cellular solids: structure and properties (Second Edition) p83(Cambridge: Press Syndicate of the University of Cambridge)

    [22]

    Li H J, Liu F, Wang T C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 1339

    [23]

    Webber K G, Aulbach E A, Key T, Marsilius M, Granzow T, Rödel J 2009 Acta Mater. 57 4614

    [24]

    Fang D L, Liu J X 2008 Fracture Mechanics of Piezoelectric and Ferroelectric Solids p21( Beijing: Press of University of Tsinghua) (in Chinese) [方岱宁, 刘金喜 2008 压电与铁电体的断裂力学(北京: 清华大学出版社) 第21页]

    [25]

    Demetriou M D, Launey M E, Garrett G 2011 Nature Mater. 10 123

    [26]

    Wada T, Inoue A, and Greer A L 2005 Appl. Phys. Lett. 86 251907

  • [1]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [2]

    Wang Y L 2003 Properties and Application of Functional Ceramics(Beijing: Science Press) (in Chinese) [王永龄 2003 功能陶瓷性能与应用(北京: 科学出版社)]

    [3]

    Zeuch D H, Montgomery S T and Holcomb D J 2000 J. Mater. Res. 15 689

    [4]

    Zeuch D H, Montgomery S T and Holcomb D J 1999 J. Mater. Res. 14 1814

    [5]

    Avdeev M, Jorgensen J D, Short S, Samara G A, Venturini E L, Yang P, Morosin B 2006 Phys. Rev. B 73 064105

    [6]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [7]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [8]

    Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Jo H R, Valadez J C, Lynch C S 2014 Appl. Phys. Lett. 104 212901

    [9]

    Zhang F P, He H L, Liu G M, Liu Y S, Yu Y, Wang Y G 2013 J. Appl. Phys. 113 183501

    [10]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701]

    [11]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 物理学报 55 2584]

    [12]

    Nie H C, Dong X L, Feng N B, Chen X F, Wang G S, Gu Y, He H L, Liu Y S 2011 Mater. Res. Bull. 46 1243

    [13]

    Feng N B, Gu Y, Liu Y S, Nie H C, Chen X F, Wang G S, He H L, Dong X L 2010 Acta Phys. Sin. 59 8897 (in Chinese) [冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林 2010 物理学报 59 8897]

    [14]

    Zeng T, Dong X L, He H L, Chen X F, Yao C H 2007 Phys. Stat. Sol. 204 1216

    [15]

    Nie H C, Dong X L, Chen X F, Wang G S, He H L 2014 Mater. Res. Bull. 51 167

    [16]

    Lan C H, Peng Y F, Long J D, Wang Q, Wang W D 2011 Chin. Phys. Lett. 28 088301

    [17]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [18]

    Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H, Olson W R 2001 J. Am. Ceram. Soc. 84 1260

    [19]

    Wang Z Z, Jiang Y X, Zhang P, Wang X Z, He H L 2014 Chin. Phys. Lett. 31 077703

    [20]

    Sutton M A, Orteu J J, Schreier HW 2009 Imgae Correlation for Shape, Motion, and Deformation Measurements p81(New York: Springer)

    [21]

    Gibson L J, Ashby M F 1997 Cellular solids: structure and properties (Second Edition) p83(Cambridge: Press Syndicate of the University of Cambridge)

    [22]

    Li H J, Liu F, Wang T C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 1339

    [23]

    Webber K G, Aulbach E A, Key T, Marsilius M, Granzow T, Rödel J 2009 Acta Mater. 57 4614

    [24]

    Fang D L, Liu J X 2008 Fracture Mechanics of Piezoelectric and Ferroelectric Solids p21( Beijing: Press of University of Tsinghua) (in Chinese) [方岱宁, 刘金喜 2008 压电与铁电体的断裂力学(北京: 清华大学出版社) 第21页]

    [25]

    Demetriou M D, Launey M E, Garrett G 2011 Nature Mater. 10 123

    [26]

    Wada T, Inoue A, and Greer A L 2005 Appl. Phys. Lett. 86 251907

  • [1] 冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响. 物理学报, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [2] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响. 物理学报, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [3] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [4] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [5] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫. 物理学报, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
    [6] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演. 物理学报, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [7] 卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东. 超声增强藻酸钙凝胶支架材料孔隙率的研究. 物理学报, 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [8] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [9] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [10] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [11] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [12] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [14] 刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳. 铀的结构相变及力学性能的第一性原理计算. 物理学报, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [15] 种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平. 窗口声阻抗对锆相变动力学的影响. 物理学报, 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [16] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [17] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [19] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究. 物理学报, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [20] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理. 物理学报, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1090
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-12
  • 修回日期:  2014-12-31
  • 刊出日期:  2015-07-05

多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变

  • 1. 宁波大学, 冲击与安全工程教育部重点实验室, 宁波 315211;
  • 2. 中国科学院, 上海硅酸盐研究所, 上海 200050;
  • 3. 中国工程物理研究院, 流体物理研究所, 绵阳 621900
    基金项目: 

    国家自然科学基金(批准号:11272164和11472142)和宁波大学王宽诚幸福基金和教育基金会资助的课题.

摘要: 通过添加造孔剂的方法制备了四种不同孔隙率未极化PZT95/5铁电陶瓷. 采用非接触式的数字散斑相关性分析(digital image correltation, DIC)全场应变光学测量技术, 对多孔未极化PZT95/5 铁电陶瓷开展了单轴压缩实验研究, 讨论了孔隙率对未极化PZT95/5铁电陶瓷的力学响应与畴变、相变行为的影响. 多孔未极化PZT95/5铁电陶瓷的单轴压缩应力-应变关系呈现出类似于泡沫或蜂窝材料的三阶段变形特征, 其变形机理主要归因于畴变和相变的共同作用, 与微孔洞塌缩过程无关. 多孔未极化PZT95/5铁电陶瓷的弹性模量、压缩强度都随着孔隙率的增加而明显降低, 而孔隙率对断裂应变的影响较小. 预制的微孔洞没有改善未极化PZT95/5铁电陶瓷材料的韧性, 这是因为单轴压缩下未极化PZT95/5铁电陶瓷的断裂机理是轴向劈裂破坏, 微孔洞对劈裂裂纹传播没有起到阻碍和分叉作用. 准静态单轴压缩下多孔未极化PZT95/5铁电陶瓷畴变和相变开始的临界应力都随着孔隙率的增大而呈线性衰减, 但相变开始的临界体积应变却不依赖孔隙率.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回