搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂GaN/AlN超晶格第一性原理计算研究

饶雪 王如志 曹觉先 严辉

掺杂GaN/AlN超晶格第一性原理计算研究

饶雪, 王如志, 曹觉先, 严辉
PDF
导出引用
  • 第一性原理计算方法在解释实验现象和预测新材料结构及其性质上有着重要作用. 因此, 通过基于密度泛函理论的第一性原理的方法, 本文系统地研究了Mg和Si掺杂闪锌矿和纤锌矿两种晶体结构的GaN/AlN超晶格体系中的能量稳定性以及电学性质. 结果表明: 在势阱层(GaN 层)中, 掺杂原子在体系中的掺杂形成能不随掺杂位置的变化而发生变化, 在势垒层(AlN层)中也是类似的情况, 这表明对于掺杂原子来说, 替代势垒层(或势阱层)中的任意阳离子都是等同的; 然而, 相比势阱层和势垒层的掺杂形成能却有很大的不同, 并且势阱层的掺杂形成能远低于势垒层的掺杂形成能, 即掺杂元素(MgGa, MgAl, SiGa和SiAl)在势阱区域的形成能更低, 这表明杂质原子更易掺杂于结构的势阱层中. 此外, 闪锌矿更低的形成能表明: 闪锌矿结构的超晶格体系比纤锌矿结构的超晶格体系更易于实现掺杂; 其中, 闪锌矿结构中, 负的形成能表明: 当Mg原子掺入闪锌矿结构的势阱层中会自发引起缺陷. 由此, 制备以闪锌矿结构超晶格体系为基底的p型半导体超晶格比制备n型半导体超晶格需要的能量更低并且更为容易制备. 对于纤锌矿体系来说, 制备p型和n型半导体的难易程度基本相同. 电子态密度对掺杂体系的稳定性和电学性质进一步分析发现, 掺杂均使得体系的带隙减小, 掺杂前后仍然为第一类半导体. 综上所述, 本文内容为当前实验中关于纤锌矿结构难以实现p型掺杂问题提供了一种新的技术思路, 即可通过调控相结构实现其p型掺杂.
    • 基金项目: 国家自然科学基金(批准号: 11274029, 51472010)、北京市青年拔尖人才培育计划(批准号: CIT&TCD201204037)、北京工业大学京华人才支持计划(批准号: 2014-JH-L07)和北京市属市管高等学校创新团队建设推进计划(批准号: IDHT20140506) 资助的课题.
    [1]

    Yu C H, Luo Q Z, Luo X D, Liu P S 2013 The Scientific World Journal 2013 931980

    [2]

    Simon J, Cao Y, Jena D 2010 Phys. Solid C 7 2386

    [3]

    Strak P, Kempisty P, Ptasinska M, Krukowski S 2013 J. Appl. Phys. 113 193706

    [4]

    Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J, Sota T 2006 Nat. Mater. 5 810

    [5]

    Gorczyca I, Suski T, Christensen N E, Svane A 2012 Cryst. Growth Des. 12 3521

    [6]

    Bayram C 2012 J. Appl. Phys. 111 043107

    [7]

    Guillot F, Bellet A E, Monroy E, Tchernycheva M, Nevou L, Doyennette L, Julien F H, Dang L S, Remmele T, Albrecht M, Shibata T, Tanaka M 2006 J. Appl. Phys. 100 044326

    [8]

    Kröger R, Kruse C, Roder C, Hommel D, Rosenauer A 2006 Phys. Solid. B 243 1533

    [9]

    Veis M, Hagihara K, Nakagawa S, Inoue Y, Ishida A 2008 Phys. Stat. Solid C 5 1547

    [10]

    Landré O, Camacho D, Bougerol C, Niquet Y M, Favre N V, Renaud G, Renevier H, Daudin B 2010 Phys. Rev. B 81 153306

    [11]

    Schubert E F, Ploog K, Dämbkes H, Heime K 1984 Appl. Phys. A 33 63

    [12]

    Caroena G, Justo J F, Machado W V M, Assali L V C 2012 Diam. Relat. Mater. 27 64

    [13]

    Zhuo X L, Ni J C, Li J C, Lin W, Cai D J, Li S P, Kang J Y 2014 J. Appl. Phys. 115 124305

    [14]

    Hertkorn J, Brckner P, Gao C, Scholz F, Chuvilin A, Kaiser U, Wurstbauer U, Wegscheider W 2008 Phys. Stat. Solid C 5 1950

    [15]

    Edmunds C, Tang L, Shao J, Li D, Cervantes M, Gardner G, Zakharov D N, Manfra M J, Malis O 2012 Appl. Phys. Lett. 101 102104

    [16]

    Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C, Hao Y 2012 Chin. Phys. B 21 077103

    [17]

    Liu N Y, Liu L, Wang L, Yang W, Li D, Li L, Cao W Y, Lu C M, Wan C H, Chen W H, Hu X D 2012 Chin. Phys. B 21 17806

    [18]

    Liu Z, Wang X L, Wang J X, Hu G X, Guo L C, Li J M 2007 Chin. Phys. Lett. 16 1467

    [19]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471

    [20]

    Perdew J P, Vosko S H 1975 Phys. Stat. Solid B 23 K47

    [21]

    Hannahs T S, Brooks S, Kang W 1989 Phys. Rev. Lett. 63 1988

    [22]

    Kresse G 1994 Phys. Rev. B 49 14251

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 1396

    [24]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [25]

    Monkhorst H J, Pack J D 1975 Phys. Rev. B 13 792

    [26]

    Caro M A, Schulz S, O’Reilly E P 2013 Phys. Rev. B 88 5647

    [27]

    Cui X Y, Delley B, Stampfl C 2010 J. Appl. Phys. 108 103701

    [28]

    Zoroddu A, Bernardini F, Ruggerone P, Fiorentini V 2001 Phys. Rev. B 64 045208

    [29]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

    [31]

    Thompson M P, Auner G W, Zheleva T S, Jones K A, Simko S J, Hilfiker J N 2001 J. Appl. Phys. 89 3331

    [32]

    van de Walle C G, Chris G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [33]

    Gorczyca I, Christensen N E, Svane A 2012 Phys. Rev. B 66 3521

    [34]

    Caro M A, Schulz S, O’Reilly E P 2013 Phys. Rev. B 86 214103

  • [1]

    Yu C H, Luo Q Z, Luo X D, Liu P S 2013 The Scientific World Journal 2013 931980

    [2]

    Simon J, Cao Y, Jena D 2010 Phys. Solid C 7 2386

    [3]

    Strak P, Kempisty P, Ptasinska M, Krukowski S 2013 J. Appl. Phys. 113 193706

    [4]

    Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J, Sota T 2006 Nat. Mater. 5 810

    [5]

    Gorczyca I, Suski T, Christensen N E, Svane A 2012 Cryst. Growth Des. 12 3521

    [6]

    Bayram C 2012 J. Appl. Phys. 111 043107

    [7]

    Guillot F, Bellet A E, Monroy E, Tchernycheva M, Nevou L, Doyennette L, Julien F H, Dang L S, Remmele T, Albrecht M, Shibata T, Tanaka M 2006 J. Appl. Phys. 100 044326

    [8]

    Kröger R, Kruse C, Roder C, Hommel D, Rosenauer A 2006 Phys. Solid. B 243 1533

    [9]

    Veis M, Hagihara K, Nakagawa S, Inoue Y, Ishida A 2008 Phys. Stat. Solid C 5 1547

    [10]

    Landré O, Camacho D, Bougerol C, Niquet Y M, Favre N V, Renaud G, Renevier H, Daudin B 2010 Phys. Rev. B 81 153306

    [11]

    Schubert E F, Ploog K, Dämbkes H, Heime K 1984 Appl. Phys. A 33 63

    [12]

    Caroena G, Justo J F, Machado W V M, Assali L V C 2012 Diam. Relat. Mater. 27 64

    [13]

    Zhuo X L, Ni J C, Li J C, Lin W, Cai D J, Li S P, Kang J Y 2014 J. Appl. Phys. 115 124305

    [14]

    Hertkorn J, Brckner P, Gao C, Scholz F, Chuvilin A, Kaiser U, Wurstbauer U, Wegscheider W 2008 Phys. Stat. Solid C 5 1950

    [15]

    Edmunds C, Tang L, Shao J, Li D, Cervantes M, Gardner G, Zakharov D N, Manfra M J, Malis O 2012 Appl. Phys. Lett. 101 102104

    [16]

    Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C, Hao Y 2012 Chin. Phys. B 21 077103

    [17]

    Liu N Y, Liu L, Wang L, Yang W, Li D, Li L, Cao W Y, Lu C M, Wan C H, Chen W H, Hu X D 2012 Chin. Phys. B 21 17806

    [18]

    Liu Z, Wang X L, Wang J X, Hu G X, Guo L C, Li J M 2007 Chin. Phys. Lett. 16 1467

    [19]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471

    [20]

    Perdew J P, Vosko S H 1975 Phys. Stat. Solid B 23 K47

    [21]

    Hannahs T S, Brooks S, Kang W 1989 Phys. Rev. Lett. 63 1988

    [22]

    Kresse G 1994 Phys. Rev. B 49 14251

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 1396

    [24]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [25]

    Monkhorst H J, Pack J D 1975 Phys. Rev. B 13 792

    [26]

    Caro M A, Schulz S, O’Reilly E P 2013 Phys. Rev. B 88 5647

    [27]

    Cui X Y, Delley B, Stampfl C 2010 J. Appl. Phys. 108 103701

    [28]

    Zoroddu A, Bernardini F, Ruggerone P, Fiorentini V 2001 Phys. Rev. B 64 045208

    [29]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

    [31]

    Thompson M P, Auner G W, Zheleva T S, Jones K A, Simko S J, Hilfiker J N 2001 J. Appl. Phys. 89 3331

    [32]

    van de Walle C G, Chris G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [33]

    Gorczyca I, Christensen N E, Svane A 2012 Phys. Rev. B 66 3521

    [34]

    Caro M A, Schulz S, O’Reilly E P 2013 Phys. Rev. B 86 214103

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2253
  • PDF下载量:  4461
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-16
  • 修回日期:  2014-12-23
  • 刊出日期:  2015-05-05

掺杂GaN/AlN超晶格第一性原理计算研究

  • 1. 北京工业大学材料科学与工程学院, 北京 100124;
  • 2. 湘潭大学材料与光电物理学院, 湘潭 411105
    基金项目: 

    国家自然科学基金(批准号: 11274029, 51472010)、北京市青年拔尖人才培育计划(批准号: CIT&TCD201204037)、北京工业大学京华人才支持计划(批准号: 2014-JH-L07)和北京市属市管高等学校创新团队建设推进计划(批准号: IDHT20140506) 资助的课题.

摘要: 第一性原理计算方法在解释实验现象和预测新材料结构及其性质上有着重要作用. 因此, 通过基于密度泛函理论的第一性原理的方法, 本文系统地研究了Mg和Si掺杂闪锌矿和纤锌矿两种晶体结构的GaN/AlN超晶格体系中的能量稳定性以及电学性质. 结果表明: 在势阱层(GaN 层)中, 掺杂原子在体系中的掺杂形成能不随掺杂位置的变化而发生变化, 在势垒层(AlN层)中也是类似的情况, 这表明对于掺杂原子来说, 替代势垒层(或势阱层)中的任意阳离子都是等同的; 然而, 相比势阱层和势垒层的掺杂形成能却有很大的不同, 并且势阱层的掺杂形成能远低于势垒层的掺杂形成能, 即掺杂元素(MgGa, MgAl, SiGa和SiAl)在势阱区域的形成能更低, 这表明杂质原子更易掺杂于结构的势阱层中. 此外, 闪锌矿更低的形成能表明: 闪锌矿结构的超晶格体系比纤锌矿结构的超晶格体系更易于实现掺杂; 其中, 闪锌矿结构中, 负的形成能表明: 当Mg原子掺入闪锌矿结构的势阱层中会自发引起缺陷. 由此, 制备以闪锌矿结构超晶格体系为基底的p型半导体超晶格比制备n型半导体超晶格需要的能量更低并且更为容易制备. 对于纤锌矿体系来说, 制备p型和n型半导体的难易程度基本相同. 电子态密度对掺杂体系的稳定性和电学性质进一步分析发现, 掺杂均使得体系的带隙减小, 掺杂前后仍然为第一类半导体. 综上所述, 本文内容为当前实验中关于纤锌矿结构难以实现p型掺杂问题提供了一种新的技术思路, 即可通过调控相结构实现其p型掺杂.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回