搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Imogolite类纳米管直径单分散性密度泛函理论研究

王雅静 李桂霞 王治华 宫立基 王秀芳

Imogolite类纳米管直径单分散性密度泛函理论研究

王雅静, 李桂霞, 王治华, 宫立基, 王秀芳
PDF
导出引用
  • 采用密度泛函理论方法研究了三种imogolite类(未取代、NH2取代和F取代)纳米管的直径单分散性及表面电荷的分布情况, 并从键长方面定性地解释了直径单分散性的原因. 我们给出了IMO, IMO_NH2和IMO_F的应变能曲线, 结果表明三种纳米管结构的最稳定管径值按照IMO IMO_NH2 IMO_F的顺序递增, 而imogolite类纳米管直径单分散性是由于管径的增大导致内部SiO, AlO键与外部Al-OH键键长变化趋势相反造成的, 总之是内部SiO, AlO 键和外部AlOH键相互作用的结果. 此外, 对三种稳定的纳米管结构做了Mulliken布局分析, 并总结了纳米管直径变化对表面电荷的影响. 结果表明正电荷主要积聚在外表面, 而内表面则感应出负电荷, 同时随着纳米管直径的增大表面电荷逐渐增加, 揭示了表面电荷与管径大小的关系. 研究表明, 可以通过改变imogolite内表面不同的官能化取代来控制纳米管直径, 进而调节表面电荷的分布情况, 这在imogolite类材料的分子设计及应用方面有着重要意义.
      通信作者: 李桂霞, qdguixiali@126.com;wangxiufanghappy@163.com ; 王秀芳, qdguixiali@126.com;wangxiufanghappy@163.com
    • 基金项目: 教育部春晖计划(批准号: Z2011120)、核废物与环境安全国防重点学科实验室开放基金(批准号: 13zxnk06)和宜宾学院计算物理四川省高等学校重点实验室开放课题基金(批准号: JSWL2014KF01)资助的课题.
    [1]

    Sehgal R, Brinker C J, Huling J C 1995 International conference on inorganic membranes Worcester, USA, July 10-14, 1994 p101225

    [2]

    Bottero I, Bonelli B, Ashbrook S E, Wright P A, Zhou W Z, Tagliabue M, Armandi M, Garrone E 2011 Phys. Chem. Chem. Phys. 13 744

    [3]

    Zang J, Chempath S, Konduri S, Nair S, Sholl D S 2010 J. Phys. Chem. Lett. 1 1235

    [4]

    Kang D Y, Brunelli N A, Yucelen G I, Venkatasubramanian A, Zang J, Leisen J, Hesketh P J, Jones C W 2014 Nat. Commun. 5 163

    [5]

    Zanzottera C, Armandi M, Esposito S, Garrone E, Bonelli B 2012 J. Phys. Chem. C 116 20417

    [6]

    Nakagaki S, Wypych F 2007 J. Colloid Interface Sci. 315 142

    [7]

    Ohashi F, Tomura S, Akaku K, Hayashi S, Wada S I 2004 J. Mater. Sci. 39 1799

    [8]

    Farmer V C, Adams M J, Fraser A R, Palmieri F 1983 Clay Miner. 18 459

    [9]

    Su C, Harsh J B 1993 Clays Clay Miner. 41 461

    [10]

    Cradwick P D G, Farmer V C, Russell J D, Masson C R, Wada K, Yoshinaga N 1972 Nature 240 187

    [11]

    Foreign Trend 2006 Modern Chemical Industry 26 71 (in Chinese) [国外动态 2006 现代化工 26 71]

    [12]

    Konduri S, Tong H M, Chempath S, Nair S 2008 J. Phys. Chem. C 112 15367

    [13]

    Zang J, Konduri S, Nair S, Sholl D S 2009 Acs. Nano 3 1548

    [14]

    Dvoyashkin M, Zang J, Yucelen G I, Katihar A, Nair S, Sholl D S, Bowers C R, Vasenkov S 2012 J. Phys. Chem. C 116 21350

    [15]

    Zhang T L, Wang Z L 1989 Acta Petrol. Mineral. 8 347 (in Chinese) [张天乐, 王宗良 1989 岩石矿物学杂志 8 347]

    [16]

    Wang H L, Li J B, Huang Y, Zou A H 1997 Mater. Rev. 11 34 (in Chinese) [王厚亮, 李建保, 黄勇, 邹爱红 1997 材料导报 11 34]

    [17]

    Yang H X, Su Z H 2007 Chin. Sci. Bull. 52 1719 (in Chinese) [杨慧娴, 苏朝晖 2007 科学通报 52 1719]

    [18]

    Ma Z, Zhu W J, Ding T, Qi X Z 2015 J. Chin. Ceram. Soc. 34 1282 (in Chinese) [马智, 朱伟佳, 刘焕焕, 丁彤, 齐晓周 2015 硅酸盐通报 34 1282]

    [19]

    Loureco M P, Guimares L, Da Silva M C, de Oliveira C, Heine T, Duarte H A 2014 J. Phys. Chem. C 118 5945

    [20]

    Park G, Lee H, Lee S U, Sohn D 2014 Mol. Cryst. Liq. Cryst. 599 68

    [21]

    Gonzlez R I, Ramez R, Rogan J, Valdivia J A, Munoz F, Valencia F, Ramirez M, Kiwi M 2014 J. Phys. Chem. C 118 28227

    [22]

    da Silva M C, Dos Santos E C, Loureco M P, Gouvea M P, Duarte H A 2015 Front. Mater. 2 16

    [23]

    Poli E, Elliott J D, Hine N D M, Mostofi A A, Teobaldi G 2015 Mater Res. Innov. 19 S272

    [24]

    Bursill L A, Peng J L, Bourgeois L N 2000 Phil. Mag. A 80 105

    [25]

    Mukherjee S, Bartlow V M, Nair S 2005 Chem. Mater. 17 4900

    [26]

    Koenderink G H, Kluijtmans S G, Philipse A P 1999 J. Colloid Interface Sci. 216 429

    [27]

    Tamura K, Kawamura K 2002 J. Phys. Chem. B 106 271

    [28]

    Lee S U, Choi Y C, Youm S G, Sohn D 2011 J. Phys. Chem. C 115 5226

    [29]

    Demichelis R, Nol Y, D'Arco P, Maschio L, Orlando R, Dovesi R 2010 J. Mater. Chem. 20 10417

    [30]

    Guimares L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G 2007 Acs. Nano 1 362

    [31]

    Konduri S, Mukherjee S, Nair S 2006 Phys. Rev. B 74 033401

    [32]

    Zhao M W, Xia Y Y, Mei L M 2009 J. Phys. Chem. C 113 14834

    [33]

    Alvarez-Ramrez F 2007 Phys. Rev. B 76 125421

    [34]

    Guimares L, Pinto Y N, Lourenco M P, Duarte H A 2013 Phys. Chem. Chem. Phys. 15 4303

    [35]

    Cygan R T, Liang J J, Kalinichev A G 2004 J. Phys. Chem. B 108 1255

    [36]

    Li L J 2008 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [李丽娟 2008 博士学位论文 (济南: 山东大学)]

    [37]

    Schrder K P, Sauer J, Leslie M, Richard C, Catlow A 1992 Chem. Phys. Lett. 188 320

    [38]

    Sainz-Diaz C I, Hernandez-Laguna A, Dove M T 2001 Phys. Chem. Miner. 28 130

    [39]

    Gustafsson J P 2001 Clays Clay Miner. 49 73

    [40]

    Li L J, Xia Y Y, Zhao M W, Song C, Li J L, Liu X D 2008 Nanotechnology 19 175702

  • [1]

    Sehgal R, Brinker C J, Huling J C 1995 International conference on inorganic membranes Worcester, USA, July 10-14, 1994 p101225

    [2]

    Bottero I, Bonelli B, Ashbrook S E, Wright P A, Zhou W Z, Tagliabue M, Armandi M, Garrone E 2011 Phys. Chem. Chem. Phys. 13 744

    [3]

    Zang J, Chempath S, Konduri S, Nair S, Sholl D S 2010 J. Phys. Chem. Lett. 1 1235

    [4]

    Kang D Y, Brunelli N A, Yucelen G I, Venkatasubramanian A, Zang J, Leisen J, Hesketh P J, Jones C W 2014 Nat. Commun. 5 163

    [5]

    Zanzottera C, Armandi M, Esposito S, Garrone E, Bonelli B 2012 J. Phys. Chem. C 116 20417

    [6]

    Nakagaki S, Wypych F 2007 J. Colloid Interface Sci. 315 142

    [7]

    Ohashi F, Tomura S, Akaku K, Hayashi S, Wada S I 2004 J. Mater. Sci. 39 1799

    [8]

    Farmer V C, Adams M J, Fraser A R, Palmieri F 1983 Clay Miner. 18 459

    [9]

    Su C, Harsh J B 1993 Clays Clay Miner. 41 461

    [10]

    Cradwick P D G, Farmer V C, Russell J D, Masson C R, Wada K, Yoshinaga N 1972 Nature 240 187

    [11]

    Foreign Trend 2006 Modern Chemical Industry 26 71 (in Chinese) [国外动态 2006 现代化工 26 71]

    [12]

    Konduri S, Tong H M, Chempath S, Nair S 2008 J. Phys. Chem. C 112 15367

    [13]

    Zang J, Konduri S, Nair S, Sholl D S 2009 Acs. Nano 3 1548

    [14]

    Dvoyashkin M, Zang J, Yucelen G I, Katihar A, Nair S, Sholl D S, Bowers C R, Vasenkov S 2012 J. Phys. Chem. C 116 21350

    [15]

    Zhang T L, Wang Z L 1989 Acta Petrol. Mineral. 8 347 (in Chinese) [张天乐, 王宗良 1989 岩石矿物学杂志 8 347]

    [16]

    Wang H L, Li J B, Huang Y, Zou A H 1997 Mater. Rev. 11 34 (in Chinese) [王厚亮, 李建保, 黄勇, 邹爱红 1997 材料导报 11 34]

    [17]

    Yang H X, Su Z H 2007 Chin. Sci. Bull. 52 1719 (in Chinese) [杨慧娴, 苏朝晖 2007 科学通报 52 1719]

    [18]

    Ma Z, Zhu W J, Ding T, Qi X Z 2015 J. Chin. Ceram. Soc. 34 1282 (in Chinese) [马智, 朱伟佳, 刘焕焕, 丁彤, 齐晓周 2015 硅酸盐通报 34 1282]

    [19]

    Loureco M P, Guimares L, Da Silva M C, de Oliveira C, Heine T, Duarte H A 2014 J. Phys. Chem. C 118 5945

    [20]

    Park G, Lee H, Lee S U, Sohn D 2014 Mol. Cryst. Liq. Cryst. 599 68

    [21]

    Gonzlez R I, Ramez R, Rogan J, Valdivia J A, Munoz F, Valencia F, Ramirez M, Kiwi M 2014 J. Phys. Chem. C 118 28227

    [22]

    da Silva M C, Dos Santos E C, Loureco M P, Gouvea M P, Duarte H A 2015 Front. Mater. 2 16

    [23]

    Poli E, Elliott J D, Hine N D M, Mostofi A A, Teobaldi G 2015 Mater Res. Innov. 19 S272

    [24]

    Bursill L A, Peng J L, Bourgeois L N 2000 Phil. Mag. A 80 105

    [25]

    Mukherjee S, Bartlow V M, Nair S 2005 Chem. Mater. 17 4900

    [26]

    Koenderink G H, Kluijtmans S G, Philipse A P 1999 J. Colloid Interface Sci. 216 429

    [27]

    Tamura K, Kawamura K 2002 J. Phys. Chem. B 106 271

    [28]

    Lee S U, Choi Y C, Youm S G, Sohn D 2011 J. Phys. Chem. C 115 5226

    [29]

    Demichelis R, Nol Y, D'Arco P, Maschio L, Orlando R, Dovesi R 2010 J. Mater. Chem. 20 10417

    [30]

    Guimares L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G 2007 Acs. Nano 1 362

    [31]

    Konduri S, Mukherjee S, Nair S 2006 Phys. Rev. B 74 033401

    [32]

    Zhao M W, Xia Y Y, Mei L M 2009 J. Phys. Chem. C 113 14834

    [33]

    Alvarez-Ramrez F 2007 Phys. Rev. B 76 125421

    [34]

    Guimares L, Pinto Y N, Lourenco M P, Duarte H A 2013 Phys. Chem. Chem. Phys. 15 4303

    [35]

    Cygan R T, Liang J J, Kalinichev A G 2004 J. Phys. Chem. B 108 1255

    [36]

    Li L J 2008 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [李丽娟 2008 博士学位论文 (济南: 山东大学)]

    [37]

    Schrder K P, Sauer J, Leslie M, Richard C, Catlow A 1992 Chem. Phys. Lett. 188 320

    [38]

    Sainz-Diaz C I, Hernandez-Laguna A, Dove M T 2001 Phys. Chem. Miner. 28 130

    [39]

    Gustafsson J P 2001 Clays Clay Miner. 49 73

    [40]

    Li L J, Xia Y Y, Zhao M W, Song C, Li J L, Liu X D 2008 Nanotechnology 19 175702

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2065
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-22
  • 修回日期:  2015-11-14
  • 刊出日期:  2016-02-05

Imogolite类纳米管直径单分散性密度泛函理论研究

    基金项目: 

    教育部春晖计划(批准号: Z2011120)、核废物与环境安全国防重点学科实验室开放基金(批准号: 13zxnk06)和宜宾学院计算物理四川省高等学校重点实验室开放课题基金(批准号: JSWL2014KF01)资助的课题.

摘要: 采用密度泛函理论方法研究了三种imogolite类(未取代、NH2取代和F取代)纳米管的直径单分散性及表面电荷的分布情况, 并从键长方面定性地解释了直径单分散性的原因. 我们给出了IMO, IMO_NH2和IMO_F的应变能曲线, 结果表明三种纳米管结构的最稳定管径值按照IMO IMO_NH2 IMO_F的顺序递增, 而imogolite类纳米管直径单分散性是由于管径的增大导致内部SiO, AlO键与外部Al-OH键键长变化趋势相反造成的, 总之是内部SiO, AlO 键和外部AlOH键相互作用的结果. 此外, 对三种稳定的纳米管结构做了Mulliken布局分析, 并总结了纳米管直径变化对表面电荷的影响. 结果表明正电荷主要积聚在外表面, 而内表面则感应出负电荷, 同时随着纳米管直径的增大表面电荷逐渐增加, 揭示了表面电荷与管径大小的关系. 研究表明, 可以通过改变imogolite内表面不同的官能化取代来控制纳米管直径, 进而调节表面电荷的分布情况, 这在imogolite类材料的分子设计及应用方面有着重要意义.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回