搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

余维-1非光滑分岔下的簇发振荡及其机理

张正娣 刘杨 张苏珍 毕勤胜

余维-1非光滑分岔下的簇发振荡及其机理

张正娣, 刘杨, 张苏珍, 毕勤胜
PDF
导出引用
导出核心图
  • 不同尺度耦合会导致一些特殊的振荡行为,通常表现为大幅振荡与微幅振荡的组合,也即所谓的簇发振荡.迄今为止,相关工作大都是围绕光滑系统开展的,而非光滑系统中由于存在着各种形式的非常规分岔,从而可能会导致更为复杂的簇发振荡模式.本文旨在揭示存在非光滑分岔时动力系统的不同尺度耦合效应.以典型的含两个非光滑分界面的广义蔡氏电路为例,通过引入周期变化的电流源以及一个用于控制的电容,选取适当的参数使得周期频率与系统频率之间存在量级差距,建立了含不同尺度的四维分段线性动力系统模型.基于快子系统在不同区域中的平衡点及其稳定性分析,以及系统轨迹穿越非光滑分界面时的分岔分析,得到了不同余维非光滑分岔的存在条件及其分岔行为.重点探讨了余维-1非光滑分岔下的簇发振荡的吸引子结构及其产生机理,揭示了非光滑分岔下系统复杂振荡行为的本质.
      通信作者: 毕勤胜, qbi@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472115,11472116)和江苏省青蓝工程资助的课题.
    [1]

    Siefert A, Henkel F O 2014 Nucl. Eng. Des. 269 130

    [2]

    Duan C, Singh R 2005 J. Sound Vib. 285 1223

    [3]

    Zhusubaliyev Z H, Mosekilde E 2008 Phys. Lett. A 372 2237

    [4]

    Jiang H B, Li T, Zeng X L, Zhang L P 2013 Acta Phys. Sin. 62 120508 (in Chinese)[姜海波, 李涛, 曾小亮, 张丽萍2013物理学报62 120508]

    [5]

    Galvenetto U 2001 J. Sound Vib. 248 653

    [6]

    Carmona V, Fernández-García S, Freire E 2012 Physica D 241 623

    [7]

    Dercole F, Gragnani A, Rinaldi S 2007 Theor. Popul. Biol. 72 197

    [8]

    Zhusubaliyev Z T, Mosekilde E 2008 Physica D 237 930

    [9]

    Rene O, Baptista M S, Caldas I L 2003 Physica D 186 133

    [10]

    Shaw S W, Holmes P A 1983 J. Sound Vib. 90 129

    [11]

    Nordmark A, Dankowicz H, Champneys A 2009 Int. J. Non-Linear Mech. 44 1011

    [12]

    Hu H Y 1995 Chaos, Solitons Fractals 5 2201

    [13]

    Xu H D 2008 Ph. D. Dissertation(Sichuan:Southwest Jiaotong University) (in Chinese)[徐慧东2008博士学位论文(四川:西南交通大学)]

    [14]

    Lu Q S, Jin L 2005 Acta Mech. Sol. Sin. 26 132 (in Chinese)[陆启韶, 金俐2005固体力学学报26 132]

    [15]

    Jiang H B, Zhang L P, Chen Z Y, Bi Q S 2012 Acta Phys. Sin. 61 080505 (in Chinese)[姜海波, 张丽萍, 陈章耀, 毕勤胜2012物理学报61 080505]

    [16]

    Stavrinides S G, Deliolanis N C 2008 Chaos, Solitons Fractals 36 1055

    [17]

    Leine R I 2006 Physica D 223 121

    [18]

    Jia Z, Leimkuhler B 2003 Future Gener. Comp. Syst. 19 415

    [19]

    Leimkuhler B 2002 Appl. Numer. Math. 43 175

    [20]

    Gyorgy L, Field R J 1992 Nature 355 808

    [21]

    Duan L X, Lu Q S, Wang Q Y 2008 Neurocomputing 72 341

    [22]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [23]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 6 1171

    [24]

    Chua L O, Lin G N 1990 IEEE Trans. Circuits Syst. 37 885

    [25]

    Mkaouar H, Boubaker O 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1292

    [26]

    Kahan S, Sicardi-Schifino A C 1999 Physica A 262 144

    [27]

    Baptist M S, Caldas I L 1999 Physica D 132 325

    [28]

    Stavrinides S G, Deliolanis N C, Miliou A N, Laopoulos T, Anagnostopoulos A N 2008 Chaos, Solitons Fractals 36 1055

  • [1]

    Siefert A, Henkel F O 2014 Nucl. Eng. Des. 269 130

    [2]

    Duan C, Singh R 2005 J. Sound Vib. 285 1223

    [3]

    Zhusubaliyev Z H, Mosekilde E 2008 Phys. Lett. A 372 2237

    [4]

    Jiang H B, Li T, Zeng X L, Zhang L P 2013 Acta Phys. Sin. 62 120508 (in Chinese)[姜海波, 李涛, 曾小亮, 张丽萍2013物理学报62 120508]

    [5]

    Galvenetto U 2001 J. Sound Vib. 248 653

    [6]

    Carmona V, Fernández-García S, Freire E 2012 Physica D 241 623

    [7]

    Dercole F, Gragnani A, Rinaldi S 2007 Theor. Popul. Biol. 72 197

    [8]

    Zhusubaliyev Z T, Mosekilde E 2008 Physica D 237 930

    [9]

    Rene O, Baptista M S, Caldas I L 2003 Physica D 186 133

    [10]

    Shaw S W, Holmes P A 1983 J. Sound Vib. 90 129

    [11]

    Nordmark A, Dankowicz H, Champneys A 2009 Int. J. Non-Linear Mech. 44 1011

    [12]

    Hu H Y 1995 Chaos, Solitons Fractals 5 2201

    [13]

    Xu H D 2008 Ph. D. Dissertation(Sichuan:Southwest Jiaotong University) (in Chinese)[徐慧东2008博士学位论文(四川:西南交通大学)]

    [14]

    Lu Q S, Jin L 2005 Acta Mech. Sol. Sin. 26 132 (in Chinese)[陆启韶, 金俐2005固体力学学报26 132]

    [15]

    Jiang H B, Zhang L P, Chen Z Y, Bi Q S 2012 Acta Phys. Sin. 61 080505 (in Chinese)[姜海波, 张丽萍, 陈章耀, 毕勤胜2012物理学报61 080505]

    [16]

    Stavrinides S G, Deliolanis N C 2008 Chaos, Solitons Fractals 36 1055

    [17]

    Leine R I 2006 Physica D 223 121

    [18]

    Jia Z, Leimkuhler B 2003 Future Gener. Comp. Syst. 19 415

    [19]

    Leimkuhler B 2002 Appl. Numer. Math. 43 175

    [20]

    Gyorgy L, Field R J 1992 Nature 355 808

    [21]

    Duan L X, Lu Q S, Wang Q Y 2008 Neurocomputing 72 341

    [22]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [23]

    Izhikevich E M 2000 Int. J. Bifurcation Chaos 6 1171

    [24]

    Chua L O, Lin G N 1990 IEEE Trans. Circuits Syst. 37 885

    [25]

    Mkaouar H, Boubaker O 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1292

    [26]

    Kahan S, Sicardi-Schifino A C 1999 Physica A 262 144

    [27]

    Baptist M S, Caldas I L 1999 Physica D 132 325

    [28]

    Stavrinides S G, Deliolanis N C, Miliou A N, Laopoulos T, Anagnostopoulos A N 2008 Chaos, Solitons Fractals 36 1055

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1433
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-15
  • 修回日期:  2016-11-02
  • 刊出日期:  2017-01-20

余维-1非光滑分岔下的簇发振荡及其机理

  • 1. 江苏大学理学院, 镇江 212013
  • 通信作者: 毕勤胜, qbi@ujs.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11472115,11472116)和江苏省青蓝工程资助的课题.

摘要: 不同尺度耦合会导致一些特殊的振荡行为,通常表现为大幅振荡与微幅振荡的组合,也即所谓的簇发振荡.迄今为止,相关工作大都是围绕光滑系统开展的,而非光滑系统中由于存在着各种形式的非常规分岔,从而可能会导致更为复杂的簇发振荡模式.本文旨在揭示存在非光滑分岔时动力系统的不同尺度耦合效应.以典型的含两个非光滑分界面的广义蔡氏电路为例,通过引入周期变化的电流源以及一个用于控制的电容,选取适当的参数使得周期频率与系统频率之间存在量级差距,建立了含不同尺度的四维分段线性动力系统模型.基于快子系统在不同区域中的平衡点及其稳定性分析,以及系统轨迹穿越非光滑分界面时的分岔分析,得到了不同余维非光滑分岔的存在条件及其分岔行为.重点探讨了余维-1非光滑分岔下的簇发振荡的吸引子结构及其产生机理,揭示了非光滑分岔下系统复杂振荡行为的本质.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回