搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中低纬度电离层偶发E层电波传播建模

郝书吉 张文超 张雅彬 杨巨涛 马广林

引用本文:
Citation:

中低纬度电离层偶发E层电波传播建模

郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林

Modeling of radio wave propagations under sporadic-E influence at low and middle latitudes

Hao Shu-Ji, Zhang Wen-Chao, Zhang Ya-Bin, Yang Ju-Tao, Ma Guang-Lin
PDF
导出引用
  • 基于电离层偶发E层(sporadic-E,Es)对电波传播的多条链路实测数据,认为电离层Es对入射电波的作用是反射和散射两种机制,且反射/散射的比例常数随着电离层Es临界频率的变化而变化,进而建立了包含反射、散射以及反射与散射共同作用的三段式电离层Es电波传播模型,并与国际电联(International Telecommunications Union,ITU)给出的Es层传播的电波场强预测模型进行了对比,验证了本文所建模型的正确性.该模型尤其适用于中低纬地区甚高频信号经Es层的传播研究.
    The sporadic-E (Es) layer is a thin layer of several kilometers existing at an altitude around 100 km and features extremely dense ionized irregularities, which can reflect or scatter high frequency (HF) and very high frequency (VHF) radio waves. The most popular theoretical explanation for mid-latitude Es formation is the wind shear theory. Measurements by rocket souding have shown that Es has high electron density and relatively sharp density gradient in the vertical direction. The one-hop propagation of VHF signal in Es can even reach as far as 2000 km. In this paper, we consider incident radio waves influenced by Es via both reflecting and scattering processes at low and middle latitudes, the coefficients of which are related to and vary with the critical frequency of Es (foEs). Firstly, with a supposed parabolic density distribution and the autocorrelation function of the electron density given by Booker, HF and VHF radio wave propagations in Es are analyzed according to the reflection and scattering theory. Secondly, a numerical model for the combined reflecting and scattering processes is developed in the form of piecewise function, the contribution of which can be distinguished by the portion factor of reflection (kr). According to the model, there are two threshold ratios of the critical frequency to the wave frequencies fr and fs respectively. The incident radio waves are totally reflected by Es when foEs/f is higher than fr and mostly scattered when foEs/f is lower than fs. A transition zone exists between two critical points, with the combined processes working together. Thirdly, HF/VHF radio wave propagations in low and middle latitudes of Es are are in the north-southern direction and east-western direction separately. The experiment link in the north-southern direction is from Kunming to Xi'an at distance of 1065 km, and the ionosonde used for Es observation is located at Chongqing. Two east-west links are arranged, one of which is from Dehong to Huaihua and the other is from Dehong to Chenzhou, with the ionosonde located at Kunming and the ground distance as far as 1240 km and 1590 km respectively. The measurement data are treated and parameters of the above mentioned model for wave propagation in Es are experimentally determined. Finally, our model is verified by comparing with ITU-R model. Our results are consistent with the results from the ITU-R model when the foEs/f is high (i.e., the reflecting process plays a main role). When the scattering process dominates, the attenuation value of VHF signal is far less than that predicted by the ITU-R model, which is closer to actual measurements. It is concluded that our model is more preferable for HF and VHF radio wave propagations in Es at low and middle latitudes.
      通信作者: 张文超, zhangwenchao0726@126.com
    • 基金项目: 中国电科技术创新基金(批准号:A171601C01)资助的课题.
      Corresponding author: Zhang Wen-Chao, zhangwenchao0726@126.com
    • Funds: Project supported by the Technology Innovate Fund of China Electronics Technology Group Corporation (Grant No. A171601C01).
    [1]

    Smith L G, Mechtly E A 1972 Radio Sci. 7 367

    [2]

    Beynon W J G, Maude A D 1972 Planet. Space Sci. 20 809

    [3]

    Kobayashi T 1964 Radio Res. 11 181

    [4]

    Bramley E N 1972 J. Atmos. Terr. Phys. 34 1495

    [5]

    Althouse E L, Davis J R 1972 Radio Sci. 7 897

    [6]

    Miya K, Shimizu K 1978 Radio Sci. 13 559

    [7]

    Kerblay T S, Makarenko S F 1980 Geomagn. Aeron. 20 449

    [8]

    Sherstyukov O N, Akchurin A D 2009 Adv. Space Res. 43 1835

    [9]

    Sherstyukov O N, Akchurin A D 2011 General Assembly and Scientific Symposium Istanbul, Aug. 13-20, 2011 p1

    [10]

    Sherstyukov O N, Akchurin A D, Sherstyukov R O 2015 Adv. Space Res. 56 1169

    [11]

    Whitehead J D 1989 J. Atmosph. Solar-Terr. Phys. 51 401

    [12]

    Tao K 1962 Ionospheric Sporadic E (New York: MacMillian Company) p235

    [13]

    Pan W Y 1981 Acta Phys. Sin. 30 661 (in Chinese) [潘威炎 1981 物理学报 30 661]

    [14]

    Zeng Z, Sokolovskiy S 2010 Geophys. Res. Lett. 37 1480

    [15]

    Huang C S, Li J 1994 Acta Phys. Sin. 43 1476 (in Chinese) [黄朝松, 李钧 1994 物理学报 43 1476]

    [16]

    Zhang Q, Wu X J 2016 Acta Phys. Sin. 65 038102 (in Chinese) [张卿, 武新军 2016 物理学报 65 038102]

    [17]

    Deng F, Zhao Z Y, Shi R, Zhang Y N 2009 Acta Phys. Sin. 58 7382 (in Chinese) [邓峰, 赵正予, 石润, 张援农 2009 物理学报 58 7382]

    [18]

    Booker H G, Gordon W E 1950 Proceed. Ire. 38 401

    [19]

    Norton K A 1956 Commun. Syst. Ire Trans. 4 39

    [20]

    Malaga A 1986 Rome Air Development Center Air Force Systems Command Griffiss Air Force Base New York, Aug 1985 p13441

    [21]

    Booker H G, Gordon W E 1958 Proceed. Ire. 46 298

    [22]

    Ovezgeldyev O G 1988 Geomagn. Aeron. 28 1024

  • [1]

    Smith L G, Mechtly E A 1972 Radio Sci. 7 367

    [2]

    Beynon W J G, Maude A D 1972 Planet. Space Sci. 20 809

    [3]

    Kobayashi T 1964 Radio Res. 11 181

    [4]

    Bramley E N 1972 J. Atmos. Terr. Phys. 34 1495

    [5]

    Althouse E L, Davis J R 1972 Radio Sci. 7 897

    [6]

    Miya K, Shimizu K 1978 Radio Sci. 13 559

    [7]

    Kerblay T S, Makarenko S F 1980 Geomagn. Aeron. 20 449

    [8]

    Sherstyukov O N, Akchurin A D 2009 Adv. Space Res. 43 1835

    [9]

    Sherstyukov O N, Akchurin A D 2011 General Assembly and Scientific Symposium Istanbul, Aug. 13-20, 2011 p1

    [10]

    Sherstyukov O N, Akchurin A D, Sherstyukov R O 2015 Adv. Space Res. 56 1169

    [11]

    Whitehead J D 1989 J. Atmosph. Solar-Terr. Phys. 51 401

    [12]

    Tao K 1962 Ionospheric Sporadic E (New York: MacMillian Company) p235

    [13]

    Pan W Y 1981 Acta Phys. Sin. 30 661 (in Chinese) [潘威炎 1981 物理学报 30 661]

    [14]

    Zeng Z, Sokolovskiy S 2010 Geophys. Res. Lett. 37 1480

    [15]

    Huang C S, Li J 1994 Acta Phys. Sin. 43 1476 (in Chinese) [黄朝松, 李钧 1994 物理学报 43 1476]

    [16]

    Zhang Q, Wu X J 2016 Acta Phys. Sin. 65 038102 (in Chinese) [张卿, 武新军 2016 物理学报 65 038102]

    [17]

    Deng F, Zhao Z Y, Shi R, Zhang Y N 2009 Acta Phys. Sin. 58 7382 (in Chinese) [邓峰, 赵正予, 石润, 张援农 2009 物理学报 58 7382]

    [18]

    Booker H G, Gordon W E 1950 Proceed. Ire. 38 401

    [19]

    Norton K A 1956 Commun. Syst. Ire Trans. 4 39

    [20]

    Malaga A 1986 Rome Air Development Center Air Force Systems Command Griffiss Air Force Base New York, Aug 1985 p13441

    [21]

    Booker H G, Gordon W E 1958 Proceed. Ire. 46 298

    [22]

    Ovezgeldyev O G 1988 Geomagn. Aeron. 28 1024

  • [1] 杨利霞, 刘超, 李清亮, 闫玉波. 斜入射非线性电离层Langmuir扰动的电磁波传播特性. 物理学报, 2022, 71(6): 064101. doi: 10.7498/aps.71.20211204
    [2] 赵海生, 许正文, 徐朝辉, 薛昆, 郑延帅, 谢守志, 冯杰, 吴健. 基于化学物质释放的电离层闪烁抑制方法研究. 物理学报, 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [3] 罗欢, 肖卉. 含突发E层的电离层模型建立及其在测高中的应用. 物理学报, 2018, 67(7): 079401. doi: 10.7498/aps.67.20172575
    [4] 魏乔菲, 尹成友, 范启蒙. 存在障碍物时电波传播抛物线方程分析及其验证. 物理学报, 2017, 66(12): 124102. doi: 10.7498/aps.66.124102
    [5] 吴静, 周志为, 闫旭. 电力线谐波辐射在分层各向异性电离层中的传播特点. 物理学报, 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [6] 刘智惟, 包为民, 李小平, 刘东林. 一种考虑电磁波驱动效应的等离子碰撞频率分段计算方法. 物理学报, 2014, 63(23): 235201. doi: 10.7498/aps.63.235201
    [7] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析. 物理学报, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [8] 胡耀垓, 赵正予, 张援农. 不同释放高度的化学物质的电离层扰动特性. 物理学报, 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [9] 张青洪, 廖成, 盛楠, 陈伶璐. 森林环境电波传播抛物方程模型的改进研究. 物理学报, 2013, 62(20): 204101. doi: 10.7498/aps.62.204101
    [10] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪. 物理学报, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [11] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [12] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究. 物理学报, 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [13] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演. 物理学报, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [14] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响. 物理学报, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [15] 徐贤胜, 洪振杰, 郭鹏, 刘荣建. COSMIC掩星电离层资料反演以及结果验证. 物理学报, 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [16] 胡耀垓, 赵正予, 张援农. 几种典型化学物质的电离层释放效应研究. 物理学报, 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [17] 石润, 赵正予. 磁倾角对电离层Alfven谐振器影响的初步研究. 物理学报, 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [18] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论. 物理学报, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [19] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告. 物理学报, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  4824
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-04
  • 修回日期:  2017-03-08
  • 刊出日期:  2017-06-05

/

返回文章
返回