搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子石墨烯中赝磁场作用下的谷霍尔效应

邓富胜 孙勇 刘艳红 董丽娟 石云龙

光子石墨烯中赝磁场作用下的谷霍尔效应

邓富胜, 孙勇, 刘艳红, 董丽娟, 石云龙
PDF
导出引用
导出核心图
  • 将石墨烯中赝磁场的产生机理运用于光子石墨烯,通过在光子石墨烯中引入晶格有规律单轴形变的方式,理论分析得到了谷依赖的均匀赝磁场,并通过数值模拟的方法观察到明显的谷霍尔效应.这种谷霍尔效应的显著程度随晶格形变度的增加而加强.在具有一定损耗的电介质材料构成的形变光子石墨烯中仍可观察到明显的谷霍尔效应.随着电介质材料损耗的增加,谷霍尔效应导致的波束转弯效果依然能够保持,只是强度逐渐变弱.类似于自旋电子学中的自旋霍尔效应,这种光子石墨烯中等效赝磁场作用下的谷霍尔效应在未来谷极化器件的设计和应用中具有重要意义.
      通信作者: 邓富胜, dengfusheng2005@163.com
    • 基金项目: 国家自然科学基金(批准号:11604186,11674247,11504211)、山西省自然科学基金(批准号:201601D202011)、山西省科技攻关项目(批准号:2015031002-2)和大同市科技攻关项目(批准号:2016021,2015015,201308)资助的课题.
    [1]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [3]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [4]

    Zhang L, Niu Q 2015 Phys. Rev. Lett. 115 115502

    [5]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901

    [6]

    Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J Jr, Ojeda-Aristizabal C, Analytis J, Wang F 2015 Nature 520 650

    [7]

    Li J, Wang K, McFaul K J, Zern Z, Ren Y, Watanabe K, Taniguchi T, Qiao Z, Zhu J 2016 Nature Nano. 11 1060

    [8]

    Yin L J, Jiang H, Qiao J B, He L 2016 Nature Commun. 7 11760

    [9]

    Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z 2017 Nat. Phys. 13 369

    [10]

    Ken-ichi S, Yoshiyuki K, Riichiro P S 2005 Theor. Phys. 113 63

    [11]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [12]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544

    [13]

    Wu Z, Zhai F, Peeters F M, Xu H Q, Chang K 2011 Phys. Rev. Lett. 106 176802

    [14]

    Jiang Y, Low T, Chang K, Katsnelson M I, Guinea F 2013 Phys. Rev. Lett. 110 046601

    [15]

    Zhang D, Seifert G, Chang K 2014 Phys. Rev. Lett. 112 096805

    [16]

    Guinea F, Geim A K, Katsnelson M I, Novoselov K S 2010 Phys. Rev. B 81 035408

    [17]

    Low T, Guinea F 2010 Nano Lett. 10 3551

    [18]

    Zandbergen S R, de Dood M J A 2010 Phys. Rev. Lett. 104 043903

    [19]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z, Segev M 2013 Nat. Mater. 13 57

    [20]

    Rechtsman M C, Plotnik Y, Zeuner J M, Song D, Chen Z, Szameit A, Segev M 2013 Phys. Rev. Lett. 111 103901

    [21]

    Zeuner J M, Rechtsman M C, Nolte S, Szameit A 2014 Opt. Lett. 39 602

    [22]

    Crespi A, Corrielli G, Valle G D, Osellame R, Longhi S 2013 New J. Phys. 15 013012

    [23]

    Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L, Chen H 2013 Europhys. Lett. 103 17003

    [24]

    Rechtsman M C, Zeuner J M, Tnnermann A, Nolte S, Segev M, Szameit A 2013 Nat. Photon. 7 153

    [25]

    Schomerus H, Halpern N Y 2013 Phys. Rev. Lett. 110 013903

    [26]

    Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang K, Chen H 2014 Opt. Express 22 23605

    [27]

    Deng F, Sun Y, Dong L, Liu Y, Shi Y 2017 J. Appl. Phys. 121 074501

    [28]

    Deng F S, Li Y M, Sun Y, Wang X, Guo Z W, Jiang H T, Shi Y L, Chang K, Chen H 2015 Opt. Lett. 40 3380

    [29]

    Albert J P, Jouanin C, Cassagne D, Monge D 2002 Opt. Quant. Electron. 34 251

    [30]

    Wolff C, Mack P, Busch K 2013 Phys. Rev. B 88 075201

    [31]

    Garcia-Pomar J L, Cortijo A, Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801

  • [1]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [3]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [4]

    Zhang L, Niu Q 2015 Phys. Rev. Lett. 115 115502

    [5]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901

    [6]

    Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J Jr, Ojeda-Aristizabal C, Analytis J, Wang F 2015 Nature 520 650

    [7]

    Li J, Wang K, McFaul K J, Zern Z, Ren Y, Watanabe K, Taniguchi T, Qiao Z, Zhu J 2016 Nature Nano. 11 1060

    [8]

    Yin L J, Jiang H, Qiao J B, He L 2016 Nature Commun. 7 11760

    [9]

    Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z 2017 Nat. Phys. 13 369

    [10]

    Ken-ichi S, Yoshiyuki K, Riichiro P S 2005 Theor. Phys. 113 63

    [11]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [12]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544

    [13]

    Wu Z, Zhai F, Peeters F M, Xu H Q, Chang K 2011 Phys. Rev. Lett. 106 176802

    [14]

    Jiang Y, Low T, Chang K, Katsnelson M I, Guinea F 2013 Phys. Rev. Lett. 110 046601

    [15]

    Zhang D, Seifert G, Chang K 2014 Phys. Rev. Lett. 112 096805

    [16]

    Guinea F, Geim A K, Katsnelson M I, Novoselov K S 2010 Phys. Rev. B 81 035408

    [17]

    Low T, Guinea F 2010 Nano Lett. 10 3551

    [18]

    Zandbergen S R, de Dood M J A 2010 Phys. Rev. Lett. 104 043903

    [19]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z, Segev M 2013 Nat. Mater. 13 57

    [20]

    Rechtsman M C, Plotnik Y, Zeuner J M, Song D, Chen Z, Szameit A, Segev M 2013 Phys. Rev. Lett. 111 103901

    [21]

    Zeuner J M, Rechtsman M C, Nolte S, Szameit A 2014 Opt. Lett. 39 602

    [22]

    Crespi A, Corrielli G, Valle G D, Osellame R, Longhi S 2013 New J. Phys. 15 013012

    [23]

    Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L, Chen H 2013 Europhys. Lett. 103 17003

    [24]

    Rechtsman M C, Zeuner J M, Tnnermann A, Nolte S, Segev M, Szameit A 2013 Nat. Photon. 7 153

    [25]

    Schomerus H, Halpern N Y 2013 Phys. Rev. Lett. 110 013903

    [26]

    Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang K, Chen H 2014 Opt. Express 22 23605

    [27]

    Deng F, Sun Y, Dong L, Liu Y, Shi Y 2017 J. Appl. Phys. 121 074501

    [28]

    Deng F S, Li Y M, Sun Y, Wang X, Guo Z W, Jiang H T, Shi Y L, Chang K, Chen H 2015 Opt. Lett. 40 3380

    [29]

    Albert J P, Jouanin C, Cassagne D, Monge D 2002 Opt. Quant. Electron. 34 251

    [30]

    Wolff C, Mack P, Busch K 2013 Phys. Rev. B 88 075201

    [31]

    Garcia-Pomar J L, Cortijo A, Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801

  • [1] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [2] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响. 物理学报, 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [3] 王义全, 许兴胜, 程丙英, 张道中, 刘晓东. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制. 物理学报, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [4] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [5] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [6] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [7] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻. 物理学报, 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [8] 周雯, 陈鹤鸣. 基于磁光效应的二维三角晶格光子晶体模分复用器. 物理学报, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [9] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计. 物理学报, 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [10] 王海啸, 徐林, 蒋建华. Dirac光子晶体. 物理学报, 2017, 66(22): 220302. doi: 10.7498/aps.66.220302
    [11] 孙家涛, 孟胜. 电子的谷自由度. 物理学报, 2015, 64(18): 187301. doi: 10.7498/aps.64.187301
    [12] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [13] 许兴胜, 陈弘达, 张道中. 非晶光子晶体中的光子局域化. 物理学报, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [14] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [15] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [16] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用. 物理学报, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [17] 何正红, 叶志成, 李争光, 崔晴宇, 苏翼凯. 复合周期的介质-液晶光子晶体研究. 物理学报, 2011, 60(3): 034213. doi: 10.7498/aps.60.034213
    [18] 袁乃昌, 刘少斌, 朱传喜. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [19] 杜晓宇, 郑婉华, 张冶金, 任 刚, 王 科, 邢名欣, 陈良惠. 慢光在光子晶体弯折波导中的高透射传播. 物理学报, 2008, 57(11): 7005-7011. doi: 10.7498/aps.57.7005
    [20] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响. 物理学报, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
  • 引用本文:
    Citation:
计量
  • 文章访问数:  733
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-01
  • 修回日期:  2017-04-16
  • 刊出日期:  2017-07-20

光子石墨烯中赝磁场作用下的谷霍尔效应

  • 1. 山西大同大学固体物理研究所, 大同 037009;
  • 2. 山西大同大学, 微结构电磁功能材料省市共建山西省重点实验室, 大同 037009;
  • 3. 山西大同大学, 新型微结构功能材料山西省高等学校重点实验室, 大同 037009;
  • 4. 同济大学, 先进微结构材料教育部重点实验室, 上海 200092
  • 通信作者: 邓富胜, dengfusheng2005@163.com
    基金项目: 

    国家自然科学基金(批准号:11604186,11674247,11504211)、山西省自然科学基金(批准号:201601D202011)、山西省科技攻关项目(批准号:2015031002-2)和大同市科技攻关项目(批准号:2016021,2015015,201308)资助的课题.

摘要: 将石墨烯中赝磁场的产生机理运用于光子石墨烯,通过在光子石墨烯中引入晶格有规律单轴形变的方式,理论分析得到了谷依赖的均匀赝磁场,并通过数值模拟的方法观察到明显的谷霍尔效应.这种谷霍尔效应的显著程度随晶格形变度的增加而加强.在具有一定损耗的电介质材料构成的形变光子石墨烯中仍可观察到明显的谷霍尔效应.随着电介质材料损耗的增加,谷霍尔效应导致的波束转弯效果依然能够保持,只是强度逐渐变弱.类似于自旋电子学中的自旋霍尔效应,这种光子石墨烯中等效赝磁场作用下的谷霍尔效应在未来谷极化器件的设计和应用中具有重要意义.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回