搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时变小世界模型的航空网优化评估

韩定定 姚清清 陈趣 钱江海

引用本文:
Citation:

基于时变小世界模型的航空网优化评估

韩定定, 姚清清, 陈趣, 钱江海

An assessment method for aviation network optimization based on time-varying small world model

Han Ding-Ding, Yao Qing-Qing, Chen Qu, Qian Jiang-Hai
PDF
导出引用
  • 航空网的优化设计对于优化资源配置、改善航运效率、提高航空公司竞争力等具有重要的现实意义.而航线结构与航班计划密不可分.本文首先讨论了航空网的时变特征,揭示了航班频率与航线距离之间的时空耦合关联.通过构建时变空间小世界模型,揭示了时变条件下网络的最优结构指数与时空耦合强度的惟一约束关系.以运行总成本最小化为主要优化目标,提出了一种可以快速评估航线结构优化情况的方法.该方法能根据网络客流分布情况快速推算出航线网络的最优拓扑及相应的航班频率分布.并用2001–2010年中国航空网络数据对此方案进行实证研究,发现预测与实际数据基本符合,并逐渐趋于稳定.这一方法能把复杂问题简单化,对各个航空公司每年的航线航班调整是否合理,现有的航空网络是否在逐步优化做出动态评估.分析航空网络的发展趋势,从而对未来的优化提供建议.
    The optimization of aviation networks is of great significance for optimizing the allocation of resources, improving transport efficiency, and enhancing the competitiveness among airline companies. There have been a lot of researches which combine the theory of complex network and the actual situations to analyze the air transportation system. The present work provides a certain theoretical basis for the plan of airline schedule. Firstly, we regard an airport as a node, flight frequency as a link weight, and build a heterogeneous network. Through empirical analysis, we find that the aviation network has small-world and scale-free properties. In addition, considering that the instant network consists of current flights changing over time, time-varying is another important characteristic of aviation network. Also, a spatiotemporal correspondence between the flight frequency and route geometric distance is demonstrated to be τij~rij-C. Secondly, by Monte Carlo simulation, we know that the time-ordered topologies influence the optimal navigation structure and make it different from those from traditional static models. Specially, we can obtain a unique restriction between C and optimal structural exponent α, which unveils a new optimization principle in route design and schedule arrangement. Applying these features to the cost-minimized optimization model, a method to evaluate the optimization of network is proposed, by which we can directly predict the overall optimal distribution of flight distances and corresponding flight frequencies only based on the information about the passenger flow assignment. Thirdly, China aviation network data from 2001 to 2010 are used for empirical study. It is found that the predictions consist with the actual data. Compared with traditional optimization methods, it can simplify the computational complexity, and therefore it takes full advantage of the structural convenience and provides a new perspective for the overall scheduling of air transportation system. In this case, companies are able to estimate route adjustments easily to see whether they are reasonable and analyze the development trend of network to provide suggestions for future optimization.
      通信作者: 韩定定, ddhan@ee.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11075057)资助的课题.
      Corresponding author: Han Ding-Ding, ddhan@ee.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11075057).
    [1]

    Brueckner J K 2004 J. Ind. Econ. 52 291

    [2]

    Li F J, Wang L P, Liu Z Y 2007 Comput. Eng. 33 279 (in Chinese) [李福娟, 王鲁平, 刘仲英 2007 计算机工程 33 279]

    [3]

    Zheng X, Yu T 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA) Ottawa, Canada, September 29-30, 2014 pp1135-1137

    [4]

    Dobson G, Lederer P J 1993 Transp. Sci. 27 281

    [5]

    Wang W, Wang C J 2013 Acta Geogr. Sin. 68 762 (in Chinese) [王伟, 王成金 2013 地理学报 68 762]

    [6]

    Gautreau A, Barrat A, Barthelemy M 2009 Proc. Natl. Acad. Sci. USA 106 8847

    [7]

    Qian J H, Han D D, Ma Y G 2011 Acta Phys. Sin. 60 098901 (in Chinese) [钱江海, 韩定定, 马余刚 2011 物理学报 60 098901]

    [8]

    Han D D, Qian J H, Liu J G 2009 Physica A 388 71

    [9]

    Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A 2004 Proc. Natl. Acad. Sci. USA 101 3747

    [10]

    Guimera R, Mossa S, Turtschi A, Amaral L A N 2005 Proc. Natl. Acad. Sci. USA 102 7794

    [11]

    Liu H K, Zhou T 2007 Acta Phys. Sin. 56 106 (in Chinese) [刘宏鲲, 周涛 2007 物理学报 56 106]

    [12]

    Luo Y Q, Tang J H, Zhao Z L, Zhu Y W, Dong X J 2014 Complex Systems and Complexity Science 11 4 (in Chinese) [罗赟骞, 汤锦辉, 赵钟磊, 朱永文, 董相均 2014 复杂系统与复杂性科学 11 4]

    [13]

    Lordan O, Sallan J M, Simo P 2014 J. Transp. Geogr. 37 112

    [14]

    Moukarzel C F, de Menezes M A 2002 Phys. Rev. E 65 056709

    [15]

    Kosmidis K, Havlin S, Bunde A 2008 Europhys. Lett. 82 48005

    [16]

    Yang H, Nie Y C, Zeng A, Fan Y, Hu Y Q, Di Z R 2010 Europhys. Lett. 89 58002

    [17]

    Kleinberg J M 2000 Nature 406 845

    [18]

    Kleinberg J M 2000 Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing Portland, USA, May 21-23, 2000 pp163-170

    [19]

    Boguna M, Krioukov D, Claffy K C 2009 Nat. Phys. 5 74

    [20]

    Pajevic S, Plenz D 2011 Nat. Phys. 8 1

    [21]

    Milo R, Shenorr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U 2002 Science 298 824

    [22]

    Li G, Reis S, Moreira A, Havlin S, Stanley H E, Andrade Jr J 2013 Phys. Rev. E 87 042810

    [23]

    Li Y, Dou F L, Fan Y, Di Z R 2012 Acta Phys. Sin. 61 228902 (in Chinese) [黎勇, 钭斐玲, 樊瑛, 狄增如 2012 物理学报 61 228902]

    [24]

    Gastner M T, Newman M 2006 Phys. Rev. E 74 016117

    [25]

    Holme P, Saramäki J 2012 Phys. Rep. 519 97

    [26]

    Kim H, Anderson R 2012 Phys. Rev. E 85 026107

    [27]

    Starnini M, Baronchelli A, Barrat A, Pastor-Satorras R 2012 Phys. Rev. E 85 056115

    [28]

    Trajanovski S, Scellato S, Leontiadis I 2012 Phys. Rev. E 85 066105

    [29]

    Chen Q, Qian J H, Zhu L, Han D D 2016 Phys. Rev. E 93 032219

    [30]

    Chen Q, Qian J H, Zhu L, Han D D 2016 J. Appl. Anal. Comput. 6 30

    [31]

    Wojahn O W 2001 Transport Res. E 37 267

    [32]

    Grosche T, Rothlauf F, Heinzl A 2007 J. Air Transp. Manag. 13 175

    [33]

    Qian J H, Han D D 2009 Physica A 388 4248

    [34]

    Jung W S, Wang F, Stanley H E 2008 Europhys. Lett. 81 48005

    [35]

    Qian J H, Han D D 2009 Acta Phys. Sin. 58 3028 (in Chinese) [钱江海, 韩定定 2009 物理学报 58 3028]

    [36]

    Nõmmik A, Kukemelk S 2016 Aviation 20 32

  • [1]

    Brueckner J K 2004 J. Ind. Econ. 52 291

    [2]

    Li F J, Wang L P, Liu Z Y 2007 Comput. Eng. 33 279 (in Chinese) [李福娟, 王鲁平, 刘仲英 2007 计算机工程 33 279]

    [3]

    Zheng X, Yu T 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA) Ottawa, Canada, September 29-30, 2014 pp1135-1137

    [4]

    Dobson G, Lederer P J 1993 Transp. Sci. 27 281

    [5]

    Wang W, Wang C J 2013 Acta Geogr. Sin. 68 762 (in Chinese) [王伟, 王成金 2013 地理学报 68 762]

    [6]

    Gautreau A, Barrat A, Barthelemy M 2009 Proc. Natl. Acad. Sci. USA 106 8847

    [7]

    Qian J H, Han D D, Ma Y G 2011 Acta Phys. Sin. 60 098901 (in Chinese) [钱江海, 韩定定, 马余刚 2011 物理学报 60 098901]

    [8]

    Han D D, Qian J H, Liu J G 2009 Physica A 388 71

    [9]

    Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A 2004 Proc. Natl. Acad. Sci. USA 101 3747

    [10]

    Guimera R, Mossa S, Turtschi A, Amaral L A N 2005 Proc. Natl. Acad. Sci. USA 102 7794

    [11]

    Liu H K, Zhou T 2007 Acta Phys. Sin. 56 106 (in Chinese) [刘宏鲲, 周涛 2007 物理学报 56 106]

    [12]

    Luo Y Q, Tang J H, Zhao Z L, Zhu Y W, Dong X J 2014 Complex Systems and Complexity Science 11 4 (in Chinese) [罗赟骞, 汤锦辉, 赵钟磊, 朱永文, 董相均 2014 复杂系统与复杂性科学 11 4]

    [13]

    Lordan O, Sallan J M, Simo P 2014 J. Transp. Geogr. 37 112

    [14]

    Moukarzel C F, de Menezes M A 2002 Phys. Rev. E 65 056709

    [15]

    Kosmidis K, Havlin S, Bunde A 2008 Europhys. Lett. 82 48005

    [16]

    Yang H, Nie Y C, Zeng A, Fan Y, Hu Y Q, Di Z R 2010 Europhys. Lett. 89 58002

    [17]

    Kleinberg J M 2000 Nature 406 845

    [18]

    Kleinberg J M 2000 Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing Portland, USA, May 21-23, 2000 pp163-170

    [19]

    Boguna M, Krioukov D, Claffy K C 2009 Nat. Phys. 5 74

    [20]

    Pajevic S, Plenz D 2011 Nat. Phys. 8 1

    [21]

    Milo R, Shenorr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U 2002 Science 298 824

    [22]

    Li G, Reis S, Moreira A, Havlin S, Stanley H E, Andrade Jr J 2013 Phys. Rev. E 87 042810

    [23]

    Li Y, Dou F L, Fan Y, Di Z R 2012 Acta Phys. Sin. 61 228902 (in Chinese) [黎勇, 钭斐玲, 樊瑛, 狄增如 2012 物理学报 61 228902]

    [24]

    Gastner M T, Newman M 2006 Phys. Rev. E 74 016117

    [25]

    Holme P, Saramäki J 2012 Phys. Rep. 519 97

    [26]

    Kim H, Anderson R 2012 Phys. Rev. E 85 026107

    [27]

    Starnini M, Baronchelli A, Barrat A, Pastor-Satorras R 2012 Phys. Rev. E 85 056115

    [28]

    Trajanovski S, Scellato S, Leontiadis I 2012 Phys. Rev. E 85 066105

    [29]

    Chen Q, Qian J H, Zhu L, Han D D 2016 Phys. Rev. E 93 032219

    [30]

    Chen Q, Qian J H, Zhu L, Han D D 2016 J. Appl. Anal. Comput. 6 30

    [31]

    Wojahn O W 2001 Transport Res. E 37 267

    [32]

    Grosche T, Rothlauf F, Heinzl A 2007 J. Air Transp. Manag. 13 175

    [33]

    Qian J H, Han D D 2009 Physica A 388 4248

    [34]

    Jung W S, Wang F, Stanley H E 2008 Europhys. Lett. 81 48005

    [35]

    Qian J H, Han D D 2009 Acta Phys. Sin. 58 3028 (in Chinese) [钱江海, 韩定定 2009 物理学报 58 3028]

    [36]

    Nõmmik A, Kukemelk S 2016 Aviation 20 32

  • [1] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [2] 王云峰, 顾成明, 张晓辉, 王雨顺, 韩月琪, 王耘锋. 优化模式物理参数的扩展四维变分同化方法. 物理学报, 2014, 63(24): 240202. doi: 10.7498/aps.63.240202
    [3] 刘乐柱, 张季谦, 许贵霞, 梁立嗣, 黄守芳. 一个修改的混沌蚁群优化算法. 物理学报, 2013, 62(17): 170501. doi: 10.7498/aps.62.170501
    [4] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [5] 钱江海, 韩定定, 马余刚. 开放式复杂航空网络系统的动力学演化. 物理学报, 2011, 60(9): 098901. doi: 10.7498/aps.60.098901
    [6] 王真, 李正宏, 徐荣昆, 杨建伦, 丁宁, 许泽平, 郭存, 宁成, 宁家敏, 蒋世伦, 章法强, 夏广新, 李林波, 叶凡, 秦义, 薛飞彪, 陈进川. 1—4 MA电流驱动的丝阵X光辐射优化的实验研究. 物理学报, 2011, 60(2): 025209. doi: 10.7498/aps.60.025209
    [7] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [8] 张春涛, 马千里, 彭宏. 基于信息熵优化相空间重构参数的混沌时间序列预测. 物理学报, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [9] 钱江海, 韩定定. 基于预期流优化的空间网络引力模型. 物理学报, 2009, 58(5): 3028-3033. doi: 10.7498/aps.58.3028
    [10] 张军峰, 胡寿松. 基于多重核学习支持向量回归的混沌时间序列预测. 物理学报, 2008, 57(5): 2708-2713. doi: 10.7498/aps.57.2708
    [11] 李 琦, 张 波, 李肇基. 漂移区表面阶梯掺杂LDMOS的击穿电压模型. 物理学报, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [12] 戴存礼, 刘曙娥, 田 亮, 施大宁. 推广的失活网络动力学同步优化. 物理学报, 2008, 57(8): 4800-4804. doi: 10.7498/aps.57.4800
    [13] 刘宏鲲, 周 涛. 中国城市航空网络的实证研究与分析. 物理学报, 2007, 56(1): 106-112. doi: 10.7498/aps.56.106
    [14] 姜可宇, 蔡志明. 变尺度概率净化法的优化. 物理学报, 2005, 54(10): 4596-4601. doi: 10.7498/aps.54.4596
    [15] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [16] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [17] 宋晏蓉, 张志刚, 王清月. 使用马丁内兹展宽器的啁啾脉冲放大器特性研究. 物理学报, 2003, 52(3): 581-586. doi: 10.7498/aps.52.581
    [18] 查学军, 朱思铮, 虞清泉. 托卡马克极向场线圈的优化方法. 物理学报, 2003, 52(2): 428-433. doi: 10.7498/aps.52.428
    [19] 陆明珠, 万明习, 施雨. 相控阵超声热疗场共轭直接合成的模式优化研究. 物理学报, 2001, 50(2): 347-353. doi: 10.7498/aps.50.347
    [20] 程 成, 何赛灵. 大口径铜蒸气激光“黑心”的优化消除. 物理学报, 2000, 49(7): 1267-1272. doi: 10.7498/aps.49.1267
计量
  • 文章访问数:  4457
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 修回日期:  2017-07-04
  • 刊出日期:  2017-12-05

/

返回文章
返回