搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油膜覆盖的非线性海面电磁散射多普勒谱特性研究

王蕊 郭立新 张策

油膜覆盖的非线性海面电磁散射多普勒谱特性研究

王蕊, 郭立新, 张策
PDF
导出引用
  • 当海面上方漂浮油膜时,海面的毛细波成分将因油膜的阻尼作用而被破坏.本文采用PM谱,基于Marangoni阻尼效应,建立油膜覆盖的一维Creamer非线性海面模型,并简单分析了油膜的阻尼作用对海面轮廓的影响.在此基础上,利用迭代物理光学方法研究了L波段下该模型的后向散射回波的多普勒谱特性,通过与基于线性模型的海面散射回波多普勒谱对比发现,在大中入射角下,非线性海面散射回波与线性海面多普勒谱的差异不可忽略,说明采用Creamer非线性理论建立海面几何模型的必要性.研究发现,油膜覆盖海面的散射回波的多普勒频移及展宽与干净海面雷达回波的多普勒特性具有明显差异,这表明海面上漂浮的油膜对雷达散射回波的多普勒特性具有显著的影响.数值结果重点分析了入射角、油膜参数以及风速对油膜覆盖海面散射回波多普勒谱展宽和频移的影响规律.
      通信作者: 郭立新, lxguo@xidian.edu.cn
    • 基金项目: 陕西省省基金(批准号:2018JQ6045)、上海航天科技创新基金资助项目和国家自然科学基金重点项目(批准号:61431010,61701428)资助的课题.
    [1]

    Sackett W M 1977 J. Geochem. Explor. 7 243

    [2]

    Acinas J R, Brebbia C A 1997 Computer Modeling of Seas and Coastal Regions Ⅲ (Southampton Boston: Computation Mechanics Publication) pp4-8

    [3]

    Gade M, Alpers W, Hhnerfuss H 1998 Remote Sens. Environ. 66 52

    [4]

    Ermakov S A, Sergievskaya L A, Zuikova E M 2000 Proc. IEEE IGARSS 2000 1513

    [5]

    Ermakov S A, Sergievskaya L A, Shchegolkov Y B 2002 Proc. IEEE IGARSS 2002 2986

    [6]

    Ye H X, Jin Y Q 2007 IEEE Trans. Geosci. Remote Sens. 45 1174

    [7]

    Zhang M, Liao C, Xiong X Z 2017 IEEE Trans. Antennas Propag. 16 364

    [8]

    Liu P, Jin Y Q 2004 IEEE Trans. Antennas Propag. 52 1205

    [9]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757

    [10]

    Yang P J, Guo L X 2016 J. Quant. Spectrosc. Radiat. Transfer 184 193

    [11]

    Nunziata F, Sobieski P, Migliaccio M 2009 IEEE Trans. Geosci. Remote Sens. 47 1949

    [12]

    Pinel N, Bourlier C, Sergievskaya I 2014 IEEE Trans. Geosci. Remote Sens. 52 2326

    [13]

    Pinel N, Déchamps N, Bourlier C 2008 IEEE Trans. Geosci. Remote Sens. 46 385

    [14]

    Ghanmi H, Khenchaf A, Comblet F 2015 J. Appl. Remote. Sens. 9 096007

    [15]

    Plant W J 1997 J. Geophys. Res. 102 21131

    [16]

    Caponi E A, Lake B, Yuen H C 1999 IEEE Trans. Antennas Propag. 47 354

    [17]

    Plant W J, Farquharson G 2012 J. Geophys. Res. 117 C08010

    [18]

    Cini R, Lombardini P P, hnerfuss H H 1983 Int. J. Remote Sens. 4 101

    [19]

    Lombardini P P, Fiscella B, Trivero P 1989 J. Atmos. Ocean. Technol. 6 882

    [20]

    Thorsos E I 1998 J. Acoust. Soc. Am. 83 78

    [21]

    Creamer D B, Henyey F, Schult R 1989 J. Fluid Mech. 205 135

    [22]

    Wang R, Guo L X 2016 IEEE Trans. Geosci. Remote Sens. Lett. 13 500

    [23]

    Wang R, Guo L X 2015 Int. J. Remote Sens. 36 845

    [24]

    Li X F, Xu X J 2011 IEEE Trans. Geosci. Remote Sens. 49 603

    [25]

    Toporkov J V, Brown G S 2000 IEEE Trans. Geosci. Remote Sens. 38 1616

    [26]

    Ye H X, Jin Y Q 2005 IEEE Trans. Antennas Propag. 53 1234

    [27]

    Gotwols B L, Chapman R D, Thompson D R 2000 Doppler Spectra and Backscatter Cross Section Voer 45°-85° Incidence, NATO/RTO Symposium 2000 p1

  • [1]

    Sackett W M 1977 J. Geochem. Explor. 7 243

    [2]

    Acinas J R, Brebbia C A 1997 Computer Modeling of Seas and Coastal Regions Ⅲ (Southampton Boston: Computation Mechanics Publication) pp4-8

    [3]

    Gade M, Alpers W, Hhnerfuss H 1998 Remote Sens. Environ. 66 52

    [4]

    Ermakov S A, Sergievskaya L A, Zuikova E M 2000 Proc. IEEE IGARSS 2000 1513

    [5]

    Ermakov S A, Sergievskaya L A, Shchegolkov Y B 2002 Proc. IEEE IGARSS 2002 2986

    [6]

    Ye H X, Jin Y Q 2007 IEEE Trans. Geosci. Remote Sens. 45 1174

    [7]

    Zhang M, Liao C, Xiong X Z 2017 IEEE Trans. Antennas Propag. 16 364

    [8]

    Liu P, Jin Y Q 2004 IEEE Trans. Antennas Propag. 52 1205

    [9]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757

    [10]

    Yang P J, Guo L X 2016 J. Quant. Spectrosc. Radiat. Transfer 184 193

    [11]

    Nunziata F, Sobieski P, Migliaccio M 2009 IEEE Trans. Geosci. Remote Sens. 47 1949

    [12]

    Pinel N, Bourlier C, Sergievskaya I 2014 IEEE Trans. Geosci. Remote Sens. 52 2326

    [13]

    Pinel N, Déchamps N, Bourlier C 2008 IEEE Trans. Geosci. Remote Sens. 46 385

    [14]

    Ghanmi H, Khenchaf A, Comblet F 2015 J. Appl. Remote. Sens. 9 096007

    [15]

    Plant W J 1997 J. Geophys. Res. 102 21131

    [16]

    Caponi E A, Lake B, Yuen H C 1999 IEEE Trans. Antennas Propag. 47 354

    [17]

    Plant W J, Farquharson G 2012 J. Geophys. Res. 117 C08010

    [18]

    Cini R, Lombardini P P, hnerfuss H H 1983 Int. J. Remote Sens. 4 101

    [19]

    Lombardini P P, Fiscella B, Trivero P 1989 J. Atmos. Ocean. Technol. 6 882

    [20]

    Thorsos E I 1998 J. Acoust. Soc. Am. 83 78

    [21]

    Creamer D B, Henyey F, Schult R 1989 J. Fluid Mech. 205 135

    [22]

    Wang R, Guo L X 2016 IEEE Trans. Geosci. Remote Sens. Lett. 13 500

    [23]

    Wang R, Guo L X 2015 Int. J. Remote Sens. 36 845

    [24]

    Li X F, Xu X J 2011 IEEE Trans. Geosci. Remote Sens. 49 603

    [25]

    Toporkov J V, Brown G S 2000 IEEE Trans. Geosci. Remote Sens. 38 1616

    [26]

    Ye H X, Jin Y Q 2005 IEEE Trans. Antennas Propag. 53 1234

    [27]

    Gotwols B L, Chapman R D, Thompson D R 2000 Doppler Spectra and Backscatter Cross Section Voer 45°-85° Incidence, NATO/RTO Symposium 2000 p1

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1367
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-25
  • 修回日期:  2018-09-27
  • 刊出日期:  2019-11-20

油膜覆盖的非线性海面电磁散射多普勒谱特性研究

  • 1. 西安电子科技大学物理与光电工程学院, 西安 710071
  • 通信作者: 郭立新, lxguo@xidian.edu.cn
    基金项目: 

    陕西省省基金(批准号:2018JQ6045)、上海航天科技创新基金资助项目和国家自然科学基金重点项目(批准号:61431010,61701428)资助的课题.

摘要: 当海面上方漂浮油膜时,海面的毛细波成分将因油膜的阻尼作用而被破坏.本文采用PM谱,基于Marangoni阻尼效应,建立油膜覆盖的一维Creamer非线性海面模型,并简单分析了油膜的阻尼作用对海面轮廓的影响.在此基础上,利用迭代物理光学方法研究了L波段下该模型的后向散射回波的多普勒谱特性,通过与基于线性模型的海面散射回波多普勒谱对比发现,在大中入射角下,非线性海面散射回波与线性海面多普勒谱的差异不可忽略,说明采用Creamer非线性理论建立海面几何模型的必要性.研究发现,油膜覆盖海面的散射回波的多普勒频移及展宽与干净海面雷达回波的多普勒特性具有明显差异,这表明海面上漂浮的油膜对雷达散射回波的多普勒特性具有显著的影响.数值结果重点分析了入射角、油膜参数以及风速对油膜覆盖海面散射回波多普勒谱展宽和频移的影响规律.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回