搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进非线性拟合的核磁共振T2谱多指数反演

吴量 陈方 黄重阳 丁国辉 丁义明

基于改进非线性拟合的核磁共振T2谱多指数反演

吴量, 陈方, 黄重阳, 丁国辉, 丁义明
PDF
导出引用
导出核心图
  • 核磁共振T2谱多指数反演算法是开展复杂体系样品核磁共振(NMR)弛豫研究最重要的数学工具. 常用的T2谱多指数反演算法一般都是事先给出弛豫时间T2分布的布点, 然后转化为线性拟合问题进行求解. 在求解的T2谱较为分散的时候, 反演得到的T2谱精确度不高, 分辨率较低. 非线性拟合是解决这个问题的有效办法. 本文针对分散T2谱反演利用非线性拟合时遇到的初值依赖及运算复杂问题, 利用线性回归最小二乘方法, 改进了其中的带非负约束非线性优化模型, 将搜索的反演参数从T2, f 减少为T2, 加快了收敛速度, 减少了对初值的依赖, 提高了反演精度, 使算法更加稳健. 通过用改进的Levenberg-Marquardt算法和差分进化算法进行计算机模拟反演及实验数据反演, 验证了改进方法在核磁共振T2 谱反演中的有效性.
      通信作者: 陈方, chenfang@wipm.ac.cn;ding@wipm.ac.cn ; 丁义明, chenfang@wipm.ac.cn;ding@wipm.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB910200)和国家自然科学基金(批准号:11405264)资助的课题.
    [1]

    Wang W M, Li P, Ye C H 2001 Sci. China A 31 730 (in Chinese) [王为民, 李培, 叶朝辉 2001 中国科学A 31 730]

    [2]

    Xu F, Huang Y R 2002 Acta Phys. Sin. 51 415 (in Chinese) [许峰, 黄永仁 2002 物理学报 51 415]

    [3]

    Zheng S K, Chen Z, Chen Z W, Zhong J H 2001 Chin. Phys. 10 558

    [4]

    Borgia G C, Brown R J S, Fantazzini P 1998 J. Magn. Res. 132 65

    [5]

    Borgia G C, Brown R J S, Fantazzini P 2000 J. Magn. Res. 147 273

    [6]

    Butler J P, Reeds J A, Dawson S V 1981 SIAM J. Numer. Anal. 18 381

    [7]

    Dunn K J, LaTorraca G A, Warner J L, Bergman D J 1994 SPE 69th Annual Techoical Conference and Exhibition New Orleans, Louisiana September25-28, 1994 SPE28367 45

    [8]

    Wang Z D, Xiao L Z, Liu T Y 2003 Sci. China G 33 323 (in Chinese) [王忠东, 肖立志, 刘堂宴 2003 中国科学G 33 323]

    [9]

    Lawson C L, Hanson R J 1974 Solving Least Square Problems (Englewood Cliffs, New Jersey: Prentice-Hall) p158

    [10]

    Bro R, De Jong S 1997 J. Chemom. 11 393

    [11]

    Liao G Z, Xiao L Z, Xie R H, Fu J J 2007 Chinese J. Geophys. 50 932 (in Chinese) [廖广志, 肖立志, 谢然红, 付娟娟 2007 地球物理学报 50 932]

    [12]

    Berman P, Levi O, Parmet Y, Saunders M, Wiesman Z 2013 Concepts in Magnetic Resonance Part A 42 72

    [13]

    Tikhonov A N 1963 Soviet Mathematics 4 1035

    [14]

    Provencher S W 1982 Comput. Phys. Commun. 27 229

    [15]

    Moody J B, Xia Y 2004 J. Magn. Res. 167 36

    [16]

    Prange M, Song Y Q 2009 J. Magn. Res. 196 54

    [17]

    Prange M, Song Y Q 2010 J. Magn. Res. 204 118

    [18]

    Lin F, Wang Z W, Li J Y, Zhang X A, Jiang Y L 2011 Appl. Geophys. 8 233

    [19]

    Wang H, Li G Y 2005 Acta Phys. Sin. 54 1431 (in Chinese) [王鹤, 李鲠颖 2005 物理学报 54 1431]

    [20]

    Pan K J, Chen H, Tan Y J 2008 Acta Phys. Sin. 57 5956 (in Chinese) [潘克家, 陈华, 谭永基 2008 物理学报 57 5956]

    [21]

    Chen H, Pan K J, Tan Y J 2009 Well Logging Technol. 33 37 (in Chinese) [陈华, 潘克家, 谭永基 2009 测井技术 33 37]

    [22]

    Tan M J, Shi Y L, Xie G B 2007 Well Logging Technol. 31 413 (in Chinese) [谭茂金, 石耀霖, 谢关宝 2007 测井技术 31 413]

    [23]

    Hastie T, Tibshirani R, Friedman J 2001 The Elements of Statistical Learning: Data Mining, Inference, and Prediction (New York: Springer) p11

  • [1]

    Wang W M, Li P, Ye C H 2001 Sci. China A 31 730 (in Chinese) [王为民, 李培, 叶朝辉 2001 中国科学A 31 730]

    [2]

    Xu F, Huang Y R 2002 Acta Phys. Sin. 51 415 (in Chinese) [许峰, 黄永仁 2002 物理学报 51 415]

    [3]

    Zheng S K, Chen Z, Chen Z W, Zhong J H 2001 Chin. Phys. 10 558

    [4]

    Borgia G C, Brown R J S, Fantazzini P 1998 J. Magn. Res. 132 65

    [5]

    Borgia G C, Brown R J S, Fantazzini P 2000 J. Magn. Res. 147 273

    [6]

    Butler J P, Reeds J A, Dawson S V 1981 SIAM J. Numer. Anal. 18 381

    [7]

    Dunn K J, LaTorraca G A, Warner J L, Bergman D J 1994 SPE 69th Annual Techoical Conference and Exhibition New Orleans, Louisiana September25-28, 1994 SPE28367 45

    [8]

    Wang Z D, Xiao L Z, Liu T Y 2003 Sci. China G 33 323 (in Chinese) [王忠东, 肖立志, 刘堂宴 2003 中国科学G 33 323]

    [9]

    Lawson C L, Hanson R J 1974 Solving Least Square Problems (Englewood Cliffs, New Jersey: Prentice-Hall) p158

    [10]

    Bro R, De Jong S 1997 J. Chemom. 11 393

    [11]

    Liao G Z, Xiao L Z, Xie R H, Fu J J 2007 Chinese J. Geophys. 50 932 (in Chinese) [廖广志, 肖立志, 谢然红, 付娟娟 2007 地球物理学报 50 932]

    [12]

    Berman P, Levi O, Parmet Y, Saunders M, Wiesman Z 2013 Concepts in Magnetic Resonance Part A 42 72

    [13]

    Tikhonov A N 1963 Soviet Mathematics 4 1035

    [14]

    Provencher S W 1982 Comput. Phys. Commun. 27 229

    [15]

    Moody J B, Xia Y 2004 J. Magn. Res. 167 36

    [16]

    Prange M, Song Y Q 2009 J. Magn. Res. 196 54

    [17]

    Prange M, Song Y Q 2010 J. Magn. Res. 204 118

    [18]

    Lin F, Wang Z W, Li J Y, Zhang X A, Jiang Y L 2011 Appl. Geophys. 8 233

    [19]

    Wang H, Li G Y 2005 Acta Phys. Sin. 54 1431 (in Chinese) [王鹤, 李鲠颖 2005 物理学报 54 1431]

    [20]

    Pan K J, Chen H, Tan Y J 2008 Acta Phys. Sin. 57 5956 (in Chinese) [潘克家, 陈华, 谭永基 2008 物理学报 57 5956]

    [21]

    Chen H, Pan K J, Tan Y J 2009 Well Logging Technol. 33 37 (in Chinese) [陈华, 潘克家, 谭永基 2009 测井技术 33 37]

    [22]

    Tan M J, Shi Y L, Xie G B 2007 Well Logging Technol. 31 413 (in Chinese) [谭茂金, 石耀霖, 谢关宝 2007 测井技术 31 413]

    [23]

    Hastie T, Tibshirani R, Friedman J 2001 The Elements of Statistical Learning: Data Mining, Inference, and Prediction (New York: Springer) p11

  • [1] 潘克家, 谭永基, 陈 华. 基于差分进化算法的核磁共振T2谱多指数反演. 物理学报, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [2] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [3] 谢宇, 赵春霞, 张浩峰, 颜雪军, 陈得宝. 基于混合交叉差分进化的相机空间操控系统参数优化. 物理学报, 2015, 64(2): 020701. doi: 10.7498/aps.64.020701
    [4] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法. 物理学报, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [5] 李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数. 物理学报, 2017, 66(18): 188702. doi: 10.7498/aps.66.188702
    [6] 曾碧榕, 姚淅伟, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [7] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [8] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [9] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度 . 物理学报, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [10] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究. 物理学报, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [11] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [12] 李绍, 任育峰, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁, 王宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [13] 许 峰, 黄永仁, 刘堂晏. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [14] 王燕, 邹男, 付进, 梁国龙. 基于倒谱分析的单水听器目标运动参数估计. 物理学报, 2014, 63(3): 034302. doi: 10.7498/aps.63.034302
    [15] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [16] 许 峰, 黄永仁, 刘堂晏. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [17] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [18] 许峰, 黄永仁. 特形脉冲的设计与计算机模拟. 物理学报, 2002, 51(11): 2617-2622. doi: 10.7498/aps.51.2617
    [19] 黄永仁, 许峰. 射频场照射下同核体系的弛豫. 物理学报, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
    [20] 许峰, 黄永仁. 射频场照射下扩展的Solomon方程及射频场的照射对异核体系弛豫速率与NOE的影响. 物理学报, 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
  • 引用本文:
    Citation:
计量
  • 文章访问数:  804
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-24
  • 修回日期:  2016-03-08
  • 刊出日期:  2016-05-05

基于改进非线性拟合的核磁共振T2谱多指数反演

    基金项目: 

    国家重点基础研究发展计划(批准号:2013CB910200)和国家自然科学基金(批准号:11405264)资助的课题.

摘要: 核磁共振T2谱多指数反演算法是开展复杂体系样品核磁共振(NMR)弛豫研究最重要的数学工具. 常用的T2谱多指数反演算法一般都是事先给出弛豫时间T2分布的布点, 然后转化为线性拟合问题进行求解. 在求解的T2谱较为分散的时候, 反演得到的T2谱精确度不高, 分辨率较低. 非线性拟合是解决这个问题的有效办法. 本文针对分散T2谱反演利用非线性拟合时遇到的初值依赖及运算复杂问题, 利用线性回归最小二乘方法, 改进了其中的带非负约束非线性优化模型, 将搜索的反演参数从T2, f 减少为T2, 加快了收敛速度, 减少了对初值的依赖, 提高了反演精度, 使算法更加稳健. 通过用改进的Levenberg-Marquardt算法和差分进化算法进行计算机模拟反演及实验数据反演, 验证了改进方法在核磁共振T2 谱反演中的有效性.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回