搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AgNbO3压电纳米材料压-电-化学耦合研究

洪元婷 马江平 武峥 应静诗 尤慧琳 贾艳敏

AgNbO3压电纳米材料压-电-化学耦合研究

洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏
PDF
导出引用
  • 采用水热法合成了AgNbO3压电纳米材料,表征了其压-电-化学耦合用于机械催化的物理机理.该耦合是压电效应和电化学氧化还原效应的乘积效应.经历60 min的机械振动后,AgNbO3纳米材料机械催化振动降解罗丹明B(~5 mg/L)的降解率达70%以上.压-电-化学耦合效应的中间产物强氧化的羟基自由基也被检测到,这表明压-电-化学耦合效应在实现机械催化过程中的关键作用.经过5次回收再利用,AgNbO3纳米材料的机械催化活性无明显降低.AgNbO3压电纳米材料具有高的压-电-化学耦合、高的机械催化降解率、可多次重复使用等优点,在振动降解有机染料方面具有重要的应用前景.
      通信作者: 武峥, wuzheng@zjnu.edu.cn;ymjia@zjnu.edu.cn ; 贾艳敏, wuzheng@zjnu.edu.cn;ymjia@zjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51502266)和浙江省基础公益研究项目(批准号:LGG18E020005)资助的课题.
    [1]

    Mueller M, Buser H 1995 Environ. Sci. Technol. 29 2031

    [2]

    Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702 (in Chinese)[吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 物理学报 66 167702]

    [3]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electro. Mater. 47 536

    [4]

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104 (in Chinese)[赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104]

    [5]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese)[李冬冬, 王丽莉 2012 物理学报 61 034212]

    [6]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese)[李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [7]

    Dong X P, Cheng F X 2015 J. Mater. Chem. A 3 23642

    [8]

    Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A 1998 Chem. Commun. 20 2185

    [9]

    Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K 2000 J. Phys. Chem. B 104 780

    [10]

    Ikeda S, Takata T, Komoda M, Hara M, Kondo J N, Domen K, Tanaka A, Hosono H, Kawazoe H 1999 Chem. Phys. 1 4485

    [11]

    Zhang J, Wu Z, Jia Y M, Kan J W, Cheng G M 2013 Sensors 13 367

    [12]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [13]

    Wu Z, Ma K, Cao Y, Jia Y M, Xie A X, Chen J R, Zhang Y H, Li H M, Zheng R K, Luo H S 2013 Appl. Phys. Lett. 103 112904

    [14]

    Xia Y T, Jia Y M, Qian W Q, Xu X L, Wu Z, Han Z C, Hong Y T, You H L, Ismail M, Bai G, Wang L W 2017 Metals 7 122

    [15]

    Lin H, Wu Z, Jia Y M, Lin W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

    [16]

    Volkov A A, Gorshunov B P, Komandin G, Fortin W, Kugel G E, Kania A, Grigas J 1995 J. Phys.:Condens Matter 7 785

    [17]

    You H L, Wu Z, Wang L, Jia Y M, Li S, Zou J 2018 Chemosphere 199 531

    [18]

    Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y 2014 Phys. Chem. Chem. Phys. 16 2758

    [19]

    Huang D, J Z P, Li C S, Yao C M, Guo J 2014 Acta Phys. Sin. 63 247101 (in Chinese)[黄丹, 鞠志萍, 李长生, 姚春梅, 郭进 2014 物理学报 63 247101]

    [20]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [21]

    Li G Q, Kako T, Wang D F, Zou Z G, Ye J H 2007 J. Solid State Chem. 180 2845

    [22]

    Kato H, Kobayashi H, Kudo A 2002 J. Phys. Chem. B 106 12441

    [23]

    Li G Q, Yang N, Wang W L, Zhang M F 2010 Electrochimica Acta 55 7235

    [24]

    Fu D, Endo M, Taniguchi H 2007 Appl. Phys. Lett. 90 252907

    [25]

    Moriwake H, Konishi A, Ogawa T, Fisher C A J, Kuwabara A, Fu D 2016 J. Appl. Phys. 119 064102

    [26]

    Kania A, Roleder K, Lukaszewski M 1983 Ferroelectrics 52 265

    [27]

    You H L, Wu Z, Jia Y M, Xu X L, Xia Y T, Han Z C, Wang Y 2017 Chemosphere 183 528

    [28]

    Wang X D, Song J H, Liu J, Wang Z L 2007 Science 316 102

    [29]

    You H L, Jia Y M, Wu Z, Xu X L, Qian W Q, Xia Y T, Ismail M 2017 Electrochem. Commun. 79 55

    [30]

    Eddingsaas N C, Suslick K S 2006 Nature 444 163

    [31]

    Xu X L, Jia Y M, Xiao L B, Wu Z 2018 Chemosphere 193 1143

    [32]

    Wu J, Mao W J, Wu Z, Xu X L, You H L, Xue A X, Jia Y M 2016 Nanoscale 8 7343

    [33]

    Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124

    [34]

    Nan C W 2004 Prog. Nat. Sci. 04 390 (in Chinese)[南策文 2004 自然科学进展 04 390]

    [35]

    Wang Z Y, Hu J, Yua M F 2006 Appl. Phys. Lett. 89 263119

    [36]

    Yu D, Zhao M L, Wang C L, Wang L H, Su W B 2016 Appl. Phys. Lett. 109 032904

    [37]

    Gao Y H, Geng X P 2004 J. Chengde Petroleum College 03 39 (in Chinese)[高永慧, 耿小丕 2004 承德石油高等专科学校学报 03 39]

    [38]

    Lee K K, Han G Y, Yoon K J, Lee B K 2004 Catal. Today 93 81

    [39]

    Konieczny A, Mondal K, Wiltowski T, Dydo P 2008 J. Hydrogen Energy 33 264

    [40]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Mater. Sci. 1 17 (in Chinese)[赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 材料科学 1 17]

    [41]

    Wu W M, Liang S J, Chen Y, Shen L J, Yuan R S, Wu L 2013 Mater. Res. Bull. 48 1618

    [42]

    Shu H M, Xie J M, Xua H, Li H M, Gu Z, Sun G S, Xu Y G 2010 J. Alloys Compd. 496 633

  • [1]

    Mueller M, Buser H 1995 Environ. Sci. Technol. 29 2031

    [2]

    Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702 (in Chinese)[吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 物理学报 66 167702]

    [3]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electro. Mater. 47 536

    [4]

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104 (in Chinese)[赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104]

    [5]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese)[李冬冬, 王丽莉 2012 物理学报 61 034212]

    [6]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese)[李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [7]

    Dong X P, Cheng F X 2015 J. Mater. Chem. A 3 23642

    [8]

    Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A 1998 Chem. Commun. 20 2185

    [9]

    Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K 2000 J. Phys. Chem. B 104 780

    [10]

    Ikeda S, Takata T, Komoda M, Hara M, Kondo J N, Domen K, Tanaka A, Hosono H, Kawazoe H 1999 Chem. Phys. 1 4485

    [11]

    Zhang J, Wu Z, Jia Y M, Kan J W, Cheng G M 2013 Sensors 13 367

    [12]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [13]

    Wu Z, Ma K, Cao Y, Jia Y M, Xie A X, Chen J R, Zhang Y H, Li H M, Zheng R K, Luo H S 2013 Appl. Phys. Lett. 103 112904

    [14]

    Xia Y T, Jia Y M, Qian W Q, Xu X L, Wu Z, Han Z C, Hong Y T, You H L, Ismail M, Bai G, Wang L W 2017 Metals 7 122

    [15]

    Lin H, Wu Z, Jia Y M, Lin W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

    [16]

    Volkov A A, Gorshunov B P, Komandin G, Fortin W, Kugel G E, Kania A, Grigas J 1995 J. Phys.:Condens Matter 7 785

    [17]

    You H L, Wu Z, Wang L, Jia Y M, Li S, Zou J 2018 Chemosphere 199 531

    [18]

    Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y 2014 Phys. Chem. Chem. Phys. 16 2758

    [19]

    Huang D, J Z P, Li C S, Yao C M, Guo J 2014 Acta Phys. Sin. 63 247101 (in Chinese)[黄丹, 鞠志萍, 李长生, 姚春梅, 郭进 2014 物理学报 63 247101]

    [20]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [21]

    Li G Q, Kako T, Wang D F, Zou Z G, Ye J H 2007 J. Solid State Chem. 180 2845

    [22]

    Kato H, Kobayashi H, Kudo A 2002 J. Phys. Chem. B 106 12441

    [23]

    Li G Q, Yang N, Wang W L, Zhang M F 2010 Electrochimica Acta 55 7235

    [24]

    Fu D, Endo M, Taniguchi H 2007 Appl. Phys. Lett. 90 252907

    [25]

    Moriwake H, Konishi A, Ogawa T, Fisher C A J, Kuwabara A, Fu D 2016 J. Appl. Phys. 119 064102

    [26]

    Kania A, Roleder K, Lukaszewski M 1983 Ferroelectrics 52 265

    [27]

    You H L, Wu Z, Jia Y M, Xu X L, Xia Y T, Han Z C, Wang Y 2017 Chemosphere 183 528

    [28]

    Wang X D, Song J H, Liu J, Wang Z L 2007 Science 316 102

    [29]

    You H L, Jia Y M, Wu Z, Xu X L, Qian W Q, Xia Y T, Ismail M 2017 Electrochem. Commun. 79 55

    [30]

    Eddingsaas N C, Suslick K S 2006 Nature 444 163

    [31]

    Xu X L, Jia Y M, Xiao L B, Wu Z 2018 Chemosphere 193 1143

    [32]

    Wu J, Mao W J, Wu Z, Xu X L, You H L, Xue A X, Jia Y M 2016 Nanoscale 8 7343

    [33]

    Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124

    [34]

    Nan C W 2004 Prog. Nat. Sci. 04 390 (in Chinese)[南策文 2004 自然科学进展 04 390]

    [35]

    Wang Z Y, Hu J, Yua M F 2006 Appl. Phys. Lett. 89 263119

    [36]

    Yu D, Zhao M L, Wang C L, Wang L H, Su W B 2016 Appl. Phys. Lett. 109 032904

    [37]

    Gao Y H, Geng X P 2004 J. Chengde Petroleum College 03 39 (in Chinese)[高永慧, 耿小丕 2004 承德石油高等专科学校学报 03 39]

    [38]

    Lee K K, Han G Y, Yoon K J, Lee B K 2004 Catal. Today 93 81

    [39]

    Konieczny A, Mondal K, Wiltowski T, Dydo P 2008 J. Hydrogen Energy 33 264

    [40]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Mater. Sci. 1 17 (in Chinese)[赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 材料科学 1 17]

    [41]

    Wu W M, Liang S J, Chen Y, Shen L J, Yuan R S, Wu L 2013 Mater. Res. Bull. 48 1618

    [42]

    Shu H M, Xie J M, Xua H, Li H M, Gu Z, Sun G S, Xu Y G 2010 J. Alloys Compd. 496 633

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2638
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-05
  • 修回日期:  2018-03-06
  • 刊出日期:  2019-05-20

AgNbO3压电纳米材料压-电-化学耦合研究

    基金项目: 

    国家自然科学基金(批准号:51502266)和浙江省基础公益研究项目(批准号:LGG18E020005)资助的课题.

摘要: 采用水热法合成了AgNbO3压电纳米材料,表征了其压-电-化学耦合用于机械催化的物理机理.该耦合是压电效应和电化学氧化还原效应的乘积效应.经历60 min的机械振动后,AgNbO3纳米材料机械催化振动降解罗丹明B(~5 mg/L)的降解率达70%以上.压-电-化学耦合效应的中间产物强氧化的羟基自由基也被检测到,这表明压-电-化学耦合效应在实现机械催化过程中的关键作用.经过5次回收再利用,AgNbO3纳米材料的机械催化活性无明显降低.AgNbO3压电纳米材料具有高的压-电-化学耦合、高的机械催化降解率、可多次重复使用等优点,在振动降解有机染料方面具有重要的应用前景.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回