搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转滑动弧放电等离子体滑动放电模式的实验研究

雷健平 何立明 陈一 陈高成 赵兵兵 赵志宇 张华磊 邓俊 费力

引用本文:
Citation:

旋转滑动弧放电等离子体滑动放电模式的实验研究

雷健平, 何立明, 陈一, 陈高成, 赵兵兵, 赵志宇, 张华磊, 邓俊, 费力

Experimental study on gliding discharge mode of rotating gliding arc discharge plasma

Lei Jian-Ping, He Li-Ming, Chen Yi, Chen Gao-Cheng, Zhao Bing-Bing, Zhao Zhi-Yu, Zhang Hua-Lei, Deng Jun, Fei Li
PDF
HTML
导出引用
  • 交流旋转滑动弧放电能够在大气压下产生大面积、高活性的非平衡等离子体. 为了研究交流旋转滑动弧的滑动放电模式、放电特性及光谱特性, 本文采用高速相机与示波器同步采集旋转滑动弧的放电图像和电信号, 采用光谱仪采集光谱信号, 分析旋转滑动弧运动过程中电弧的动态行为、电信号及光谱信号特征. 实验结果表明, 旋转滑动弧放电过程中存在两种不同的滑动放电模式, 即伴随击穿滑动放电模式(B-G模式)与稳定滑动放电模式(A-G模式). 其中B-G模式以电弧旋转滑动过程中伴随击穿-熄灭-击穿的高频击穿现象为主要特征, 而A-G模式以持续稳定的连续电弧滑动为主要特征. 本文讨论了工作参数影响滑动弧放电模式、放电特性及光谱特性的工作机制. 研究发现, 电弧的放电模式和放电特性是激励电压与气体流量共同作用的结果. 当气体流量较大、激励电压较小时, 滑动弧为B-G模式主导的高频击穿不稳定放电; 而当激励电压较大、气体流量较小时, 滑动弧则为A-G模式为主导的稳定滑动放电.
    Alternating current rotating gliding arc discharge can produce large-scale, wide-range non-equilibrium plasma at atmospheric pressure. In order to investigate the gliding discharge mode, discharge characteristics and Spectral characteristics of AC rotating gliding arc discharge plasma, high speed camera, oscilloscope and spectrometer are used to collect discharge images and electrical signals of rotating gliding arc synchronously. Thus the dynamic behavior of arc and the characteristics of electric signal in the process of rotating gliding arc can be analyzed. The experimental results show that there are two different discharge modes in the rotating gliding arc discharge process, namely the breakdown gliding discharge mode (B-G mode) and the stable gliding discharge mode (A-G mode). The B-G mode is mainly characterized by high-frequency breakdown phenomenon (breakdown-extinguish-breakdown) during the arc gliding process, while the A-G mode is mainly characterized by stable continuous arc sliding. The paper also discusses the working mechanism in which the working parameters influence the gliding arc discharge characteristics. It is shown that the discharge mode and discharge characteristics of arc are the result of the combined action of excitation voltage and gas flow. When the gas flow is large and the excitation voltage is small, the gliding arc is an unstable discharge dominated by the B-G mode. Conversely, when the excitation voltage is large and the gas flow is small, the gliding arc is a stable gliding discharge dominated by the A-G mode. In addition, in B-G mode, the energy consumption is mainly concentrated in the breakdown moment, and the energy release is mainly pulsed. However, when the gliding arc discharge is in A-G mode, the energy dissipation is mainly used to maintain the continuous existence of the arc without extinguishing, and the energy release is stable and continuous. Affected by the gas flow rate and excitation voltage, the breakdown frequency of the B-G mode is greater than that of the A-G mode. Higher repeat breakdown frequency can cause multiple ionization in the process of gliding arc discharge, which produces more active particles. The research conclusions in this paper provide theoretical support for regulating the operating characteristics of the gliding arc discharge. In engineering application, the discharge mode, breakdown frequency and breakdown current of the gliding arc can be adjusted by changing the working parameters to obtain plasma sources with different characteristics.
      通信作者: 赵兵兵, zhaobing186@163.com
    • 基金项目: 国家自然科学基金(批准号: 51436008, 51806245)和中国博士后科学基金(批准号: 2019M653961)资助的课题
      Corresponding author: Zhao Bing-Bing, zhaobing186@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51436008, 51806245) and the China Postdoctoral Science Foundation (Grant No. 2019M653961)
    [1]

    Czernichowski A 1994 Pure Appl. Chem. 66 061301

    [2]

    Czernichowski A, Czernichowski M 2005 17 th International Symposium On Plasma Chemistry Toronto, Canada, August 7–12, 2005 p001

    [3]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energy Combust. 25 0211Google Scholar

    [4]

    Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 04

    [5]

    Wu A J, Li X D, Yan J H, Zhu F S, Lu S Y 2016 Int. J. Hydrogen Energy 41 2222Google Scholar

    [6]

    Xia Y, Lu N, Wang B, Li J, Shang K F, Jiang N, Wu Y 2017 Int. J. Hydrogen Energy 42 001Google Scholar

    [7]

    Whitehead J C, Prantsidou M 2016 J. Phys. D: Appl. Phys. 49 154001Google Scholar

    [8]

    邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage Engineering 42 685

    [9]

    Zhang H, Zhu F S, Li X D, Xu R Y, Li L, Yan J H 2019 J. Hazard. Mater. 369 244Google Scholar

    [10]

    Xu R Y, Zhu F S, Zhang H, Ruya P M, Li L, Li X D 2020 Energy Fuels 34 2045Google Scholar

    [11]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697

    Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Engineering 42 3697

    [12]

    Pawłat Joanna, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K 2019 Plasma Chem. Plasma Process. 39 627Google Scholar

    [13]

    Hameedl T A, Kadhem S J 2020 IOP Conf. Ser.: Mater. Sci. Eng. 757 012045Google Scholar

    [14]

    Ju Y G, Sun W T 2015 Prog. Energy Combust. 48 21Google Scholar

    [15]

    Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar

    [16]

    Kong C D, Gao J L, Zhu J J, Andreas E, Marcus A, Li Z S 2018 IEEE Trans. Plasma Sci. 47 403

    [17]

    Gray J A T, Lacoste D A 2019 Combust. Flame 199 258Google Scholar

    [18]

    牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 物理学报 64 195204Google Scholar

    Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Physica Sinica 64 195204Google Scholar

    [19]

    Kikuchi Y, Nakagawa T 2020 IEEE Trans. Plasma Sci. 99 001

    [20]

    何立明, 陈一, 刘兴建, 吴勇, 刘鹏飞, 张一汉 2016 高电压技术 42 1921

    He L M, Chen Y, Liu X J, Wu Y, Liu P X, Zhang Y H 2016 High Voltage Engineering 42 1921

    [21]

    Sun S R, Kolev S, Wang H X, Bogaerts A 2016 Plasma Sources Sci. Technol. 26 015003Google Scholar

    [22]

    Kolev S, Bogaerts A 2018 Plasma Sources Sci. Technol. 27 125011Google Scholar

    [23]

    Ananthanarasimhan J, Rao L, Shivapuji A, Dasappa S 2019 International Plasma Chemistry Society, Naples, Italy, June 9–14, ISPC-24

    [24]

    Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H 2015 IEEE Trans. Plasma Sci. 43 836Google Scholar

    [25]

    Zhang H, Zhu F S, Tu X, Bo Z, Li X D 2016 Plasma Sci. Technol. 18 473Google Scholar

    [26]

    何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061

    He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061

    [27]

    鲁娜, 孙丹凤, 王冰, 李杰, 吴彦 2018 高电压技术 44 1930

    Lu N, Sun D F, Wang B, Li J, Wu Y 2018 High Voltage Engineering 44 1930

    [28]

    Li L, Zhang H, Li X D, Kong X Z, Xu R Y, Tay K, Tu X 2019 J. CO2 Util. 29 296Google Scholar

    [29]

    Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770 001

    [30]

    李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 物理学报 67 075201Google Scholar

    Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar

    [31]

    李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022

    Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022

  • 图 1  滑动弧放电示意图 (a) 二维刀型电极滑动弧放电示意图; (b) 三维旋转滑动弧放电示意图

    Fig. 1.  Schematic diagram of gliding arc discharge: (a) Schematic diagram of two-dimensional knife-type electrode gliding arc discharge; (b) schematic diagram of three-dimensional rotating gliding arc discharge.

    图 2  旋转滑动弧放电实验系统示意图

    Fig. 2.  Schematic diagram of rotating gliding arc discharge experiment system.

    图 3  B-G模式下的滑动弧放电的电信号及电弧运动图像(U0 = 100 V, Q = 120 SLM) (a)一个完整滑动周期的电信号曲线; (b)滑动弧放电图像(左)及完整周期的滑动弧运动过程图像(右); (c)滑动弧运动图像和电信号同步特征

    Fig. 3.  Electric signal and arc image of rotating gliding arc discharge in B-G mode (U0 = 100 V, Q = 120 SLM): (a) The electrical signal curve of a gliding period; (b) gliding arc discharge image (left) and a cycle of gliding arc motion process image (right); (c) synchronization of gliding arc moving image and electric signal.

    图 4  A-G模式下的滑动弧放电的电信号及电弧运动图像(U0 = 100 V, Q = 40 SLM) (a)完整滑动周期的电信号曲线; (b)滑动弧放电图像(左)及完整周期的滑动弧运动过程图像(右); (c)滑动弧运动图像和电信号同步特征

    Fig. 4.  Electric signal and arc image of rotating gliding arc discharge in A-G mode (U0 = 100 V, Q = 40 SLM): (a) The electrical signal curve of a gliding period; (b) gliding arc discharge image (left) and a cycle of gliding arc motion process image (right); (c) synchronization of gliding arc moving image and electric signal.

    图 5  滑动弧电弧运动图像和电信号变化的同步特征

    Fig. 5.  Synchronization characteristics of gliding arc electric image and electric signal changes.

    图 6  旋转滑动弧放电模式及击穿频率统计图

    Fig. 6.  Statistical diagram of rotational gliding arc discharge mode and breakdown frequency.

    图 7  不同工作参数下滑动弧击穿电流随电弧长度变化的统计图

    Fig. 7.  Statistical diagram of the variation of gliding dynamic arc breakdown current with arc length under different working parameters.

    图 8  光谱采集位置分布示意图及滑动弧放电图像

    Fig. 8.  Schematic diagram of the spectrum acquisition position distribution and gliding arc discharge image.

    图 9  8个光谱信号采集点的光谱曲线

    Fig. 9.  8-point spectral curve

    图 10  不同气体流量、激励电压下的OH和O的特征波长的光谱发射强度 (a) OH (309 nm)光谱发射强度; (b) O (777.4 nm)光谱发射强度; (c) O (822.2 nm)光谱发射强度

    Fig. 10.  Spectral emission intensity of OH and O characteristic wavelengths under different gas flow rates and excitation voltages: (a) OH (309 nm) spectral emission intensity; (b) O (777.4 nm) spectral emission intensity; (c) O (822.2 nm) Spectral emission intensity.

    图 11  滑动弧放电的工作机制示意图

    Fig. 11.  Schematic diagram of control mechanism of gliding arc discharge characteristics.

    表 1  实验工况表

    Table 1.  Experimental conditions table.

    工况压力P/kPa激励电压U0/V气体流量Q/SLM
    110110040
    210110060
    310110090
    4101100120
    510115040
    610115060
    710115090
    8101150120
    下载: 导出CSV
  • [1]

    Czernichowski A 1994 Pure Appl. Chem. 66 061301

    [2]

    Czernichowski A, Czernichowski M 2005 17 th International Symposium On Plasma Chemistry Toronto, Canada, August 7–12, 2005 p001

    [3]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energy Combust. 25 0211Google Scholar

    [4]

    Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 04

    [5]

    Wu A J, Li X D, Yan J H, Zhu F S, Lu S Y 2016 Int. J. Hydrogen Energy 41 2222Google Scholar

    [6]

    Xia Y, Lu N, Wang B, Li J, Shang K F, Jiang N, Wu Y 2017 Int. J. Hydrogen Energy 42 001Google Scholar

    [7]

    Whitehead J C, Prantsidou M 2016 J. Phys. D: Appl. Phys. 49 154001Google Scholar

    [8]

    邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage Engineering 42 685

    [9]

    Zhang H, Zhu F S, Li X D, Xu R Y, Li L, Yan J H 2019 J. Hazard. Mater. 369 244Google Scholar

    [10]

    Xu R Y, Zhu F S, Zhang H, Ruya P M, Li L, Li X D 2020 Energy Fuels 34 2045Google Scholar

    [11]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697

    Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Engineering 42 3697

    [12]

    Pawłat Joanna, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K 2019 Plasma Chem. Plasma Process. 39 627Google Scholar

    [13]

    Hameedl T A, Kadhem S J 2020 IOP Conf. Ser.: Mater. Sci. Eng. 757 012045Google Scholar

    [14]

    Ju Y G, Sun W T 2015 Prog. Energy Combust. 48 21Google Scholar

    [15]

    Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar

    [16]

    Kong C D, Gao J L, Zhu J J, Andreas E, Marcus A, Li Z S 2018 IEEE Trans. Plasma Sci. 47 403

    [17]

    Gray J A T, Lacoste D A 2019 Combust. Flame 199 258Google Scholar

    [18]

    牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 物理学报 64 195204Google Scholar

    Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Physica Sinica 64 195204Google Scholar

    [19]

    Kikuchi Y, Nakagawa T 2020 IEEE Trans. Plasma Sci. 99 001

    [20]

    何立明, 陈一, 刘兴建, 吴勇, 刘鹏飞, 张一汉 2016 高电压技术 42 1921

    He L M, Chen Y, Liu X J, Wu Y, Liu P X, Zhang Y H 2016 High Voltage Engineering 42 1921

    [21]

    Sun S R, Kolev S, Wang H X, Bogaerts A 2016 Plasma Sources Sci. Technol. 26 015003Google Scholar

    [22]

    Kolev S, Bogaerts A 2018 Plasma Sources Sci. Technol. 27 125011Google Scholar

    [23]

    Ananthanarasimhan J, Rao L, Shivapuji A, Dasappa S 2019 International Plasma Chemistry Society, Naples, Italy, June 9–14, ISPC-24

    [24]

    Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H 2015 IEEE Trans. Plasma Sci. 43 836Google Scholar

    [25]

    Zhang H, Zhu F S, Tu X, Bo Z, Li X D 2016 Plasma Sci. Technol. 18 473Google Scholar

    [26]

    何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061

    He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061

    [27]

    鲁娜, 孙丹凤, 王冰, 李杰, 吴彦 2018 高电压技术 44 1930

    Lu N, Sun D F, Wang B, Li J, Wu Y 2018 High Voltage Engineering 44 1930

    [28]

    Li L, Zhang H, Li X D, Kong X Z, Xu R Y, Tay K, Tu X 2019 J. CO2 Util. 29 296Google Scholar

    [29]

    Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770 001

    [30]

    李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 物理学报 67 075201Google Scholar

    Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar

    [31]

    李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022

    Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022

  • [1] 朱彦熔, 常正实. 脉冲电压上升沿对He 大气压等离子体射流管内放电发展演化特性的影响. 物理学报, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [2] 张磊, 于锦禄, 赵兵兵, 陈朝, 蒋永健, 胡长淮, 程惠能, 郭昊. 高气压下交流旋转滑动弧放电特性实验研究. 物理学报, 2022, 71(7): 075204. doi: 10.7498/aps.71.20211232
    [3] 谢盈, 朱志刚, 张晓锋, 任国栋. 光电流驱动下非线性神经元电路的放电模式控制. 物理学报, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [4] 黄梅婷, 姜银花, 陈钰琦, 李润华. 铋黄铜中微量元素的高重复频率激光剥离-火花诱导击穿光谱定量分析. 物理学报, 2021, 70(10): 104206. doi: 10.7498/aps.70.20202018
    [5] 朱彦熔, 常正实. 脉冲电压上升沿对He APPJ管内放电发展演化特性的影响研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210470
    [6] 董婉, 徐海文, 戴忠玲, 宋远红, 王友年. 电非对称双频容性耦合CF4/Ar放电电极间距对放电模式和刻蚀剖面的影响. 物理学报, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [7] 张存波, 闫涛, 杨志强, 任伟涛, 朱占平. 频率对半导体器件热击穿影响的理论模型. 物理学报, 2017, 66(1): 018501. doi: 10.7498/aps.66.018501
    [8] 周前红, 孙会芳, 董志伟, 周海京. 微波大气击穿阈值的理论研究. 物理学报, 2015, 64(17): 175202. doi: 10.7498/aps.64.175202
    [9] 李丹, 胡海云. 基于局部放电理论的聚合物电介质击穿动力学理论研究. 物理学报, 2014, 63(11): 117701. doi: 10.7498/aps.63.117701
    [10] 李世文, 冯国英, 李玮, 韩敬华, 周晟阳, 殷家家, 杨超, 周寿桓. 高压击穿铜丝物相研究. 物理学报, 2012, 61(22): 225206. doi: 10.7498/aps.61.225206
    [11] 汪宇, 李晓东, 余量, 严建华. 滑动弧低温等离子体放电特性的数值模拟研究. 物理学报, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [12] 郭卿超, 张家良, 刘莉莹, 王德真. 大气压Ar射频容性放电模式转变的温度表征. 物理学报, 2011, 60(2): 025207. doi: 10.7498/aps.60.025207
    [13] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究. 物理学报, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [14] 李 琦, 张 波, 李肇基. 漂移区表面阶梯掺杂LDMOS的击穿电压模型. 物理学报, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [15] 郭亮良, 冯 倩, 马香柏, 郝 跃, 刘 杰. GaN FP-HEMTs中击穿电压与电流崩塌的关系. 物理学报, 2007, 56(5): 2900-2904. doi: 10.7498/aps.56.2900
    [16] 卢 肖, 吴传贵, 张万里, 李言荣. 射频溅射制备的BST薄膜介电击穿研究. 物理学报, 2006, 55(5): 2513-2517. doi: 10.7498/aps.55.2513
    [17] 哈斯乌力吉, 吕志伟, 李 强, 巴德欣, 张 祎, 何伟明. 受激布里渊散射介质光学击穿的研究. 物理学报, 2006, 55(10): 5252-5256. doi: 10.7498/aps.55.5252
    [18] 哈斯乌力吉, 吕志伟, 何伟明, 李 强, 巴德欣. 光学击穿对受激布里渊散射特性的影响. 物理学报, 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [19] 陈斗南, 刘百勇, 郑学仁. 薄SixOyNz膜击穿机理的研究. 物理学报, 1989, 38(1): 68-75. doi: 10.7498/aps.38.68
    [20] 杨士才, 王龙. 托卡马克装置的击穿条件. 物理学报, 1987, 36(11): 1385-1394. doi: 10.7498/aps.36.1385
计量
  • 文章访问数:  8356
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 修回日期:  2020-06-27
  • 上网日期:  2020-10-16
  • 刊出日期:  2020-10-05

/

返回文章
返回