搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由分子区内纳米颗粒的热泳力计算

崔杰 苏俊杰 王军 夏国栋 李志刚

引用本文:
Citation:

自由分子区内纳米颗粒的热泳力计算

崔杰, 苏俊杰, 王军, 夏国栋, 李志刚

Thermophoretic force on nanoparticles in free molecule regime

Cui Jie, Su Jun-Jie, Wang Jun, Xia Guo-Dong, Li Zhi-Gang
PDF
HTML
导出引用
  • 基于非平衡态分子动力学模拟方法, 研究了自由分子区内纳米颗粒的热泳特性. 理论研究表明, 纳米颗粒与周围气体分子之间的非刚体碰撞效应会明显地改变其热泳特性, 经典的Waldmann热泳理论并不适用, 但尚未有定量的直接验证. 模拟计算结果表明: 对于纳米颗粒而言, 当气-固相互作用势能较弱或气体温度较高时, 气体分子与纳米颗粒之间的非刚体碰撞效应可以忽略, Waldmann热泳理论与分子动力学模拟结果吻合较好; 当气-固相互作用势能较强或气体温度较低时, 非刚体碰撞效应较为明显, Waldmann热泳理论与模拟结果存在较大误差. 基于分子动力学模拟结果, 对纳米颗粒的等效粒径进行了修正, 并考虑了气体分子与纳米颗粒之间的非刚体碰撞效应, 理论计算结果与分子动力学模拟结果吻合较好.
    Thermophoresis refers to the motion of small particles suspending in a fluid with non-uniform temperature distribution due to the temperature gradient around the particle. Usually, the fluid molecules coming from the hot side carry more kinetic energy than those from the cold side, which results in a net thermophoretic force in the direction opposite to the temperature gradient. Since it was discovered more than 100 years ago, thermophoresis has been of major importance in a variety of applications, where it can play either beneficial role or adverse role, including material synthesis, micro- and nano-fabrication, and environmental science. Therefore, it is necessary to accurately evaluate the thermophoretic force. In the present work, the thermophoretic force on nanoparticles is examined in the free molecule regime by using non-equilibrium molecule dynamics (MD) simulation. It has been widely accepted that the thermophoretic force conforms with the Waldmann equation for large Knudsen numbers. However, due to the effect of the nonrigid-body interactions between the particle and gas molecules, the thermophoretic force on nanoparticles might deviate greatly from the classical theory. In our MD model, a single nanoparticle with a diameter of several nanometers suspends in a diluted gas. The Lennard-Jones (L-J) potential is employed to simulate the intermolecular interactions. To avoid deforming the nanoparticle, the solid molecules within the nanoparticles are linked to their nearest neighbors through a finite extensible nonlinear elastic bonding potential. The thermophoretic force on a nanoparticle is calculated by imposing a harmonic potential on the nanoparticle, which eliminates the effect of the Brownian motion of the nanoparticle on the thermophoresis. The effective thermal conductivity of the ambient gas is employed in Waldmann equation for the thermophoretic force due to the finite volume effect. It is found that the Waldmann theory for thermophoresis is still valid for nanoparticles in the case of weak gas-particle interaction or high gas temperature. With the increase of the gas-particle interaction strength or the decrease of the gas temperature, the Waldmann theory is invalid due to the effect of gas-particle nonrigid-body collisions and the adsorption of gas molecules on the particle surface. By considering the gas-particle nonrigid-body interaction and the modified particle size, the theoretical results for thermophoretic force accord with the MD simulations quite well.
      通信作者: 王军, jwang@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51776007)、北京市科技新星计划(批准号: Z191100001119033)和北京市教委青年拔尖人才培养计划(批准号: CIT&TCD201904015)资助的课题
      Corresponding author: Wang Jun, jwang@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51776007), the Beijing Nova Program of Science and Technology, China (Grant No. Z191100001119033), and the Young Talent Project of Beijing Municipal Education Committee, China (Grant No. CIT&TCD201904015)
    [1]

    Cadle R D 1967 Science 157 1548

    [2]

    Zheng F 2002 Adv. Colloid Interface Sci. 97 255Google Scholar

    [3]

    Tyndall J 1870 Br. Med. J. 547 661

    [4]

    Anderson J L 1989 Annu. Rev. Fluid Mech. 21 61Google Scholar

    [5]

    Vigolo D, Rusconi R, Stone H A, Piazza R 2010 Soft Matter 6 3489Google Scholar

    [6]

    He Y, Tsutsui M, Scheicher R H, Bai F, Taniguchi M, Kawai T 2013 ACS Appl. Nano Mater. 7 538Google Scholar

    [7]

    Wienken C J, Baaske P, Rothbauer U, Braun D, Duhr S 2010 Nat. Commun. 1 100Google Scholar

    [8]

    Messerer A, Niessner R, Pöschl U 2003 J. Aerosol Sci. 34 1009Google Scholar

    [9]

    Gomez A, Rosner D E 1993 Combust. Sci. Technol. 89 335Google Scholar

    [10]

    Iacopini S, Rusconi R, Piazza R 2006 Eur. Phys. J. E 19 59Google Scholar

    [11]

    Wang J, Li Z 2012 Phys. Rev. E 86 011201Google Scholar

    [12]

    罗爽, 焦可歆, 刘志宇, 梁深, 戚朋飞, 王军 2015 中国科技论文 10 2083Google Scholar

    Luo S, Jiao K X, Liu Z Y, Liang S, Qi P F, Wang J 2015 China Sciencepaper 10 2083Google Scholar

    [13]

    Brenner H 2005 Phys. Rev. E 72 061201Google Scholar

    [14]

    徐东艳, 陈熙 2001 工程热物理学报 22 721Google Scholar

    Xu D Y, Chen Xi 2001 J. Eng. Thermophys. 22 721Google Scholar

    [15]

    Li W, Davis E J 1995 J. Aerosol Sci. 26 1063Google Scholar

    [16]

    Li Z, Wang H 2004 Phys. Rev. E 70 021205Google Scholar

    [17]

    Li Z, Wang H 2003 Phys. Rev. E 68 061206Google Scholar

    [18]

    Li Z, Wang H 2003 Phys. Rev. E 68 061207Google Scholar

    [19]

    Epstein P S 1929 Z. Physik 54 537Google Scholar

    [20]

    Brock J R 1962 J. Colloid Sci. 17 768Google Scholar

    [21]

    Sone Y 1977 Rarefied Gas Dyn. 1 417

    [22]

    Rosenblatt P, Lamer V K 1946 Phys. Rev. 70 385Google Scholar

    [23]

    Saxton R L, Ranz W E 1952 J. Appl. Phys. 23 917Google Scholar

    [24]

    Schadt C F, Cadle R D 1961 J. Phys. Chem. 65 1689Google Scholar

    [25]

    Waldmann L 1959 Z. Naturforsch. A 14 589Google Scholar

    [26]

    Brock J R 1967 J. Colloid Interface Sci. 23 448Google Scholar

    [27]

    Talbot L, Cheng R K, Schefer R W, Willis D R 1980 J. Fluid Mech. 101 737Google Scholar

    [28]

    Tsuji T, Iseki H, Hanasaki I 2017 J. Phys.: Condens. Matter 29 475101Google Scholar

    [29]

    Li Z 2009 Phys. Rev. E 80 061204Google Scholar

    [30]

    Galliero G, Volz S 2008 J. Chem. Phys. 128 6330Google Scholar

    [31]

    Vladkov M, Barrat J L 2020 Macromol. Theory Simul. 15 252Google Scholar

    [32]

    Tsuji T, Iseki H, Hanasaki I 2016 Rarefied Gas Dyn. 1786 110003Google Scholar

    [33]

    李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热 2018 物理学报 67 056101Google Scholar

    Li J J, Lu B B, Xian Y H, Hu G M, Xia R 2018 Acta Phys. Sin. 67 056101Google Scholar

    [34]

    Wang J, Luo S, Xia G 2017 Phys. Rev. E 95 033101Google Scholar

    [35]

    Kröger M 2004 Phys. Rep. 390 453Google Scholar

    [36]

    Hanasaki I, Nagura R, Kawano S 2015 J. Chem. Phys. 142 104301Google Scholar

    [37]

    Hanasaki I, Fujiwara D, Kawano S 2016 J. Chem. Phys. 144 094503Google Scholar

    [38]

    Barker, J. A 1966 J. Chem. Phys. 44 4206Google Scholar

    [39]

    Bird R B 2002 Appl. Mech. Rev 55 R1Google Scholar

    [40]

    Li F, Wang J, Xia G, Li Z 2019 Nanoscale 11 13051Google Scholar

    [41]

    Phillips W F 1972 Phys. Fluids 15 999Google Scholar

    [42]

    Woodcock L V 1971 Chem. Phys. Lett. 10 257Google Scholar

  • 图 1  分子动力学模型图

    Fig. 1.  Snapshot for the MD simulation system.

    图 2  压力P*随数密度n变化图

    Fig. 2.  The pressure P* versus the gas molecular number density n.

    图 3  FT, MD/FT, B, FT, E/FT, BFT, Phillips/FT, B随模拟空间尺寸的变化 (a) kij = 5.26; (b) kij =1

    Fig. 3.  Influence of the size of simulation box on FT, MD/FT, B, FT, E/FT, B and FT, Phillips/FT, B: (a) kij =5.26, (b) kij =1.

    图 4  热泳力FT,MDFT,E随气体有效热导率κ' 的变化

    Fig. 4.  Influence of the effective thermal conductivity of the media gas on the thermophoretic forces.

    图 5  不同参数下热泳力的分子动力学结果FT,MD与Waldmann公式结果FT,E比较图 (a) 环境温度T*; (b) 气-固结合强度kij; (c) 温度梯度$ \nabla T^* $

    Fig. 5.  The variation of thermophoretic force FT between present MD simulation result FT, MD and Waldmann equation result FT, E under different parameters: (a) The environ-ment temperature $ T_{0}^* $; (b) the intensity of gas-particle interaction kij; (c) temperature gradient $ \nabla T^* $.

    图 6  无量纲热泳力$f_{{\rm{T}}}^* $随颗粒直径$D_{{\rm{P}}}^* $变化图 (a)刚体碰撞模型; (b) 非刚体碰撞模型FT = FT, LW1; (c) 非刚体碰撞模型FT = FT, LW2(考虑气体分子吸附引起的颗粒尺寸变化)

    Fig. 6.  The dimensionless thermophoretic force $f_{{\rm{T}}}^* $ as a function of $D_{{\rm{P}}}^* $ for different gas-particle interaction intensity: (a) The rigid body collision model FT = FT, E; (b) the non-rigid body collision model FT = FT, LW1; (c) FT = FT, LW2 (wherein the vary of particle size is considered).

    图 7  纳米颗粒表面气体原子的势能Ep, 动能Ek及密度函数g分布图

    Fig. 7.  The potential energy Ep, kinetic energy Ek and density function g on the surface of nanoparticles.

    表 1  分子动力学模拟系统的几何特征参数

    Table 1.  Geometric and characteristic parameters of the simulation systems.

    $l_{x}^* $$l_{y}^* $ ($l_{z}^* $)L*$T_{{\rm{h}}}^* $$T_{{\rm{l}}}^* $T*KnL
    19.0049.437.502.672.592.633.311283
    28.5040.3611.252.692.572.632.207522
    38.0034.9515.002.712.562.631.655642
    47.5031.2618.752.732.542.631.324513
    57.0028.5422.502.752.522.631.103761
    66.5026.4226.252.762.502.630.946081
    下载: 导出CSV
  • [1]

    Cadle R D 1967 Science 157 1548

    [2]

    Zheng F 2002 Adv. Colloid Interface Sci. 97 255Google Scholar

    [3]

    Tyndall J 1870 Br. Med. J. 547 661

    [4]

    Anderson J L 1989 Annu. Rev. Fluid Mech. 21 61Google Scholar

    [5]

    Vigolo D, Rusconi R, Stone H A, Piazza R 2010 Soft Matter 6 3489Google Scholar

    [6]

    He Y, Tsutsui M, Scheicher R H, Bai F, Taniguchi M, Kawai T 2013 ACS Appl. Nano Mater. 7 538Google Scholar

    [7]

    Wienken C J, Baaske P, Rothbauer U, Braun D, Duhr S 2010 Nat. Commun. 1 100Google Scholar

    [8]

    Messerer A, Niessner R, Pöschl U 2003 J. Aerosol Sci. 34 1009Google Scholar

    [9]

    Gomez A, Rosner D E 1993 Combust. Sci. Technol. 89 335Google Scholar

    [10]

    Iacopini S, Rusconi R, Piazza R 2006 Eur. Phys. J. E 19 59Google Scholar

    [11]

    Wang J, Li Z 2012 Phys. Rev. E 86 011201Google Scholar

    [12]

    罗爽, 焦可歆, 刘志宇, 梁深, 戚朋飞, 王军 2015 中国科技论文 10 2083Google Scholar

    Luo S, Jiao K X, Liu Z Y, Liang S, Qi P F, Wang J 2015 China Sciencepaper 10 2083Google Scholar

    [13]

    Brenner H 2005 Phys. Rev. E 72 061201Google Scholar

    [14]

    徐东艳, 陈熙 2001 工程热物理学报 22 721Google Scholar

    Xu D Y, Chen Xi 2001 J. Eng. Thermophys. 22 721Google Scholar

    [15]

    Li W, Davis E J 1995 J. Aerosol Sci. 26 1063Google Scholar

    [16]

    Li Z, Wang H 2004 Phys. Rev. E 70 021205Google Scholar

    [17]

    Li Z, Wang H 2003 Phys. Rev. E 68 061206Google Scholar

    [18]

    Li Z, Wang H 2003 Phys. Rev. E 68 061207Google Scholar

    [19]

    Epstein P S 1929 Z. Physik 54 537Google Scholar

    [20]

    Brock J R 1962 J. Colloid Sci. 17 768Google Scholar

    [21]

    Sone Y 1977 Rarefied Gas Dyn. 1 417

    [22]

    Rosenblatt P, Lamer V K 1946 Phys. Rev. 70 385Google Scholar

    [23]

    Saxton R L, Ranz W E 1952 J. Appl. Phys. 23 917Google Scholar

    [24]

    Schadt C F, Cadle R D 1961 J. Phys. Chem. 65 1689Google Scholar

    [25]

    Waldmann L 1959 Z. Naturforsch. A 14 589Google Scholar

    [26]

    Brock J R 1967 J. Colloid Interface Sci. 23 448Google Scholar

    [27]

    Talbot L, Cheng R K, Schefer R W, Willis D R 1980 J. Fluid Mech. 101 737Google Scholar

    [28]

    Tsuji T, Iseki H, Hanasaki I 2017 J. Phys.: Condens. Matter 29 475101Google Scholar

    [29]

    Li Z 2009 Phys. Rev. E 80 061204Google Scholar

    [30]

    Galliero G, Volz S 2008 J. Chem. Phys. 128 6330Google Scholar

    [31]

    Vladkov M, Barrat J L 2020 Macromol. Theory Simul. 15 252Google Scholar

    [32]

    Tsuji T, Iseki H, Hanasaki I 2016 Rarefied Gas Dyn. 1786 110003Google Scholar

    [33]

    李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热 2018 物理学报 67 056101Google Scholar

    Li J J, Lu B B, Xian Y H, Hu G M, Xia R 2018 Acta Phys. Sin. 67 056101Google Scholar

    [34]

    Wang J, Luo S, Xia G 2017 Phys. Rev. E 95 033101Google Scholar

    [35]

    Kröger M 2004 Phys. Rep. 390 453Google Scholar

    [36]

    Hanasaki I, Nagura R, Kawano S 2015 J. Chem. Phys. 142 104301Google Scholar

    [37]

    Hanasaki I, Fujiwara D, Kawano S 2016 J. Chem. Phys. 144 094503Google Scholar

    [38]

    Barker, J. A 1966 J. Chem. Phys. 44 4206Google Scholar

    [39]

    Bird R B 2002 Appl. Mech. Rev 55 R1Google Scholar

    [40]

    Li F, Wang J, Xia G, Li Z 2019 Nanoscale 11 13051Google Scholar

    [41]

    Phillips W F 1972 Phys. Fluids 15 999Google Scholar

    [42]

    Woodcock L V 1971 Chem. Phys. Lett. 10 257Google Scholar

  • [1] 黄雪峰, 刘敏, 卢山, 张敏琦, 李盛姬, 罗丹. 强吸收纳米粒子团簇的光泳力悬浮及热泳力下的迁移行为. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240288
    [2] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [3] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟. 物理学报, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [4] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [5] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟. 物理学报, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [6] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [7] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究. 物理学报, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [8] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [9] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究. 物理学报, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [10] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [11] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [12] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [13] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [14] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [15] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [16] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [17] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [18] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解. 物理学报, 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [19] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  5226
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-11-05
  • 上网日期:  2021-02-25
  • 刊出日期:  2021-03-05

/

返回文章
返回