Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them

Qiu Dong-Hong Wen Qi-Ye Yang Qing-Hui Chen Zhi Jing Yu-Lan Zhang Huai-Wu

Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them

Qiu Dong-Hong, Wen Qi-Ye, Yang Qing-Hui, Chen Zhi, Jing Yu-Lan, Zhang Huai-Wu
PDF
Get Citation
  • High-quality VO2 thin films are deposited on the metal platinum (Pt) electrode buffered by silicon dioxide (SiO2) using radio frequency magnetron sputtering. The effect of the thickness of SiO2 on the the crystal structure, morphology and metal-insulator transition (MIT) performance of the films are discussed. Results show that SiO2 buffer layer with a thickness of 0.2 μm can effectively eliminate huge stress between the VO2 film and the metal film; and the VO2 thin film with the distinct MIT are deposited. When the buffer layer reaches more than 0.7 μm, the VO2 film has a distinct (011) preferred orientation, the smooth surface and compact nanostructure, and the resistance change reaches more than three orders of magnitude. At the same time, Pt-SiO2/VO2-Au sandwiched structure is achieved to test the current versus voltage curves, in which can be seen several distinct steps of current caused by the voltage perpendicular to the plane of a VO2 film. The result confirms the electrically-driven metal-insulator transition. Due to the high-quality VO2 and the flexible device structure, the VO2/Pt-SiO2 can be widely used for large-scale integrated electronic control devices.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 61131005), Key Project of Chinese Ministry of Education (Grant No. 313013), the National High Technology Research and Development Program 863 (Grant No. 2011AA010204), the "New Century Excellent Talent Foundation" of China (Grant No. NCET-11-0068), the Sichuan Youth S & T foundation, China (Grant No. 2011JQ0001), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110185130002), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J034), and the CAEP THz Science and Technology Foundation (Grant No. CAEPTHZ201207).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [3]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [4]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y X, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202]

    [7]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [8]

    Seo G, Kim B -J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Device Lett. 32 1582

    [9]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [10]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [11]

    Lee Y W, Kim B J, Lim J W, Yun S J, Choi S, Chae B G, Kim G, Kim H T 2008 Appl. Phys. Lett. 92 162903

    [12]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [13]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 物理学报 59 7857]

    [14]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [15]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [16]

    Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919

    [17]

    Zhou Y, Chen X, Ko C, Yang Z, Ramanathan S 2013 IEEE Electron Device Lett. 34 220

    [18]

    Okimura K, Suruz Mian Md 2012 J. Vac. Sci. Technol. A 30 051502

    [19]

    Grbovic D, Lavrik N V, Rajic S, Datskos P G 2008 J. Appl. Phys. 104 054508

    [20]

    Ji Y D, Pan T S, Bi Z, Liang W Z, Zhang Y, Zeng H Z, Wen Q Y, Zhang H W, Jia Q X, Lin Y 2012 Appl. Phys. Lett. 101 071902

    [21]

    Narayan J, Bhosle V M 2006 J. Appl. Phys. 100 103524

    [22]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [23]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [24]

    Crunteanu A, Givernaud J, Leroy J, Mardivirin D, Champeaux C, Orlianges J C, Catherinot A, Blondy P 2010 Sci. Technol. Adv. Mater. 11 065002

    [25]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [26]

    Ko C, Ramanathan S 2008 Appl. Phys. Lett. 93 252101

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [3]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [4]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y X, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202]

    [7]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [8]

    Seo G, Kim B -J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Device Lett. 32 1582

    [9]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [10]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [11]

    Lee Y W, Kim B J, Lim J W, Yun S J, Choi S, Chae B G, Kim G, Kim H T 2008 Appl. Phys. Lett. 92 162903

    [12]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [13]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 物理学报 59 7857]

    [14]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [15]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [16]

    Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919

    [17]

    Zhou Y, Chen X, Ko C, Yang Z, Ramanathan S 2013 IEEE Electron Device Lett. 34 220

    [18]

    Okimura K, Suruz Mian Md 2012 J. Vac. Sci. Technol. A 30 051502

    [19]

    Grbovic D, Lavrik N V, Rajic S, Datskos P G 2008 J. Appl. Phys. 104 054508

    [20]

    Ji Y D, Pan T S, Bi Z, Liang W Z, Zhang Y, Zeng H Z, Wen Q Y, Zhang H W, Jia Q X, Lin Y 2012 Appl. Phys. Lett. 101 071902

    [21]

    Narayan J, Bhosle V M 2006 J. Appl. Phys. 100 103524

    [22]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [23]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [24]

    Crunteanu A, Givernaud J, Leroy J, Mardivirin D, Champeaux C, Orlianges J C, Catherinot A, Blondy P 2010 Sci. Technol. Adv. Mater. 11 065002

    [25]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [26]

    Ko C, Ramanathan S 2008 Appl. Phys. Lett. 93 252101

  • [1] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [3] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [4] Yang Jian-Gang, Hu Chun-Bo, Zhu Xiao-Fei, Li Yue, Hu Xu, Deng Zhe. Experiment Study of Characteristics of Powder Pneumatic Filling. Acta Physica Sinica, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [5] Analysis of Coherent Combination Characteristics of Beam Array via Tight Focusing. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200034
    [6] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [7] Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191591
    [8] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [9] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [10] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
  • Citation:
Metrics
  • Abstract views:  577
  • PDF Downloads:  835
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2013
  • Accepted Date:  01 August 2013
  • Published Online:  05 November 2013

Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them

  • 1. State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
  • 2. National Key Laboratory of Science and Technology on Communication, University of Electronic, Science and Technology of China, Chengdu 610054, China
Fund Project:  Project supported by the National Nature Science Foundation of China (Grant No. 61131005), Key Project of Chinese Ministry of Education (Grant No. 313013), the National High Technology Research and Development Program 863 (Grant No. 2011AA010204), the "New Century Excellent Talent Foundation" of China (Grant No. NCET-11-0068), the Sichuan Youth S & T foundation, China (Grant No. 2011JQ0001), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110185130002), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J034), and the CAEP THz Science and Technology Foundation (Grant No. CAEPTHZ201207).

Abstract: High-quality VO2 thin films are deposited on the metal platinum (Pt) electrode buffered by silicon dioxide (SiO2) using radio frequency magnetron sputtering. The effect of the thickness of SiO2 on the the crystal structure, morphology and metal-insulator transition (MIT) performance of the films are discussed. Results show that SiO2 buffer layer with a thickness of 0.2 μm can effectively eliminate huge stress between the VO2 film and the metal film; and the VO2 thin film with the distinct MIT are deposited. When the buffer layer reaches more than 0.7 μm, the VO2 film has a distinct (011) preferred orientation, the smooth surface and compact nanostructure, and the resistance change reaches more than three orders of magnitude. At the same time, Pt-SiO2/VO2-Au sandwiched structure is achieved to test the current versus voltage curves, in which can be seen several distinct steps of current caused by the voltage perpendicular to the plane of a VO2 film. The result confirms the electrically-driven metal-insulator transition. Due to the high-quality VO2 and the flexible device structure, the VO2/Pt-SiO2 can be widely used for large-scale integrated electronic control devices.

Reference (26)

Catalog

    /

    返回文章
    返回