Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improved properties of boron-doped zinc oxide films with In2O3:Sn interlayers for solar cells

Zhao Hui-Xu Chen Xin-Liang Yang Xu Du Jian Bai Li-Sha Chen Ze Zhao Ying Zhang Xiao-Dan

Improved properties of boron-doped zinc oxide films with In2O3:Sn interlayers for solar cells

Zhao Hui-Xu, Chen Xin-Liang, Yang Xu, Du Jian, Bai Li-Sha, Chen Ze, Zhao Ying, Zhang Xiao-Dan
PDF
Get Citation
  • Boron-doped zinc oxide (BZO) films with a natural pyramid-textured surface grown by metal organic chemical vapor deposition (MOCVD) have large light trapping effect in thin film silicon solar cells when used as front contact electrodes. However, the surface topography of traditional BZO films is so sharp as to damage the quality of the subsequent silicon thin film materials and to reduce the photovoltaic conversion efficiency of the solar cells. In this work, an ultra-thin In2O3:Sn(ITO)film (~ 4 nm) is used as the interlayer in the sandwiched structure of the multilayer films, i.e. glass/bottom BZO layer /ITO interlayer/top BZO layer. The surface properties can be improved through modulating the thickness of the top BZO layer. Appropriate thickness of top BZO layer and ITO interlayer are helpful for obtaining the cauliflower-like surface morphology and thus the sharp structure becomes relatively gentle, but the surface morphology still keeps a pyramid feature when depositing thicker top BZO layer. The relatively gentle surface morphology could promote crystallization quality ofc-Si:H thin film materials and reduce cracks in intrinsic layer and TCO/P-Si interface defects. Finally, this new sandwiched structure of multilayer ZnO films is applied in c-Si:H p-i-n thin film solar cells. Compared with traditional BZO films, the quantum efficiency (QE) of solar cells with a sandwiched structure of ZnO increases by about 10%, and both the open-circuit voltage (Voc) and short-circuit current density (Jsc) may increase and thus improve the solar cell efficiency.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2011CBA00705, 2011CBA00706 2011CBA00707), the Major Science and Technology Support Project of Tianjin, China City (Grant No. 11TXSYGX22100), the Tianjin Applied Basic Research Project and Cutting-edge Technology Research Plan, China (Grant No. 13JCZDJC26900), the International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580), the National High Technology Research and Development Program of China (Grant No. 2013AA050302), and the Fundamental Research Funds for the Central Universities (Grant No. 65010341).
    [1]

    Meier J, Spitznagel J, Kroll U, Bucher C, Fay S, Moriarty T, Shah A 2004 Thin Solid Films 451-452 518

    [2]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 物理学报 62 058801]

    [3]

    Steinhauser J, Fay S, Oliveira N, Vallat-Sauvain E, Ballif C 2007 Appl. Phys. Lett. 90 142107

    [4]

    Addonizio M L, Antonaia A 2009 Thin Solid Films 518 1026

    [5]

    Zhang C, Chen X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 23 (in Chinese) [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012物理学报 61 23]

    [6]

    Kubon M, Boehmer E, Siebke F, Rech B, Beneking C, Wagner H 1996 Sol. Energy Mater. Sol. Cells 41-42 485

    [7]

    Nuruddin A, Abelson J R 2001 Thin Solid Films 394 49

    [8]

    Lai K C, Liu C C, Lu C H, Yeh C H, Houng M P 2010 Sol. Energy Mater. Sol. Cells 94 397

    [9]

    Jerome S 2008 Low pressure chemical vapor deposited zinc oxide for silicon thin film solar cells Ph. D. Dissertation (Neuchatel: Universite of Neuchatel Institut of Microtechnique)

    [10]

    Stiebig H, Siebke F, Beyer W, Beneking C, Rech B, Wagner H 1997 Sol. Energy Mater. Sol. Cells 48 351

    [11]

    Ganguly G, Carlson D E, Hegedus S S, Ryan D, Gordon R G, Pang D, Reedy R C 2004 Appl. Phys. Lett. 85 3

    [12]

    Boccard M, Cuony P, Despeisse M, Domine D, Feltrin A, Wyrsch N, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 195

    [13]

    Aswin H, Taweewat K, Ihsanul A Y, Shinsuke M, Makoto K 2010 Appl. Phys. Express 3 051102

    [14]

    Steinhauser J, Boucher J F, Omnes E, Borrello D, Sauvain E V, Monteduro G, Marmelo M, Orhan J B, Wolf B, Bailat J, Benagli S, Meier J, Kroll U 2011 Thin Solid Films 520 1218

    [15]

    Soderstrom K, Bugnon G, Haug F J, Nicolay S, Ballif C 2012 Sol. Energy Mater. Sol. Cells 101 193

    [16]

    Boccard M, Battaglia C, Hanni S, SoderstromK, Escarre J, Nicolay S, Meillaud F, Despeisse M, Ballif C 2012 Nano Lett. 12 1344

    [17]

    Messerschmidt D, Nicolay S, Ding L, Bugnon G, Meillaud F, Eberhardt J, Ballif C 2013 J. Appl. Phys. 113 024908

    [18]

    Yan C B, Chen X L, Wang F, Sun J, Zhang D K, Wei C C, Zhang X D, Zhao Y, Geng X H 2012 Thin Solid Films 521 249

    [19]

    Battaglia C, Escarre J, Soderstrom K, Boccard M, Ballif C 2012 Energy Procedia 15 206

    [20]

    Chen X L, Xue J M, Zhang D K, Sun J, Ren H Z, Zhao Y, Geng X H 2007 Acta Phys. Sin. 56 1563 (in Chinese) [陈新亮, 薛俊明, 张德坤, 孙建, 任慧志, 赵颖, 耿新华 2007 物理学报 56 1563]

    [21]

    Saito T, Watanabe Y, Takahashi K, Matsuzawa T, Baosheng Sang, Konagai M 1997 Sol. Energy Mater. Sol. Cells 49 187

    [22]

    Nicolay S, Fay S, Ballif C 2009 Crystal Growth & Design 9 4957

    [23]

    Addonizio M L, Diletto C 2008 Sol. Energy Mater. Sol. Cells 92 1488

    [24]

    Xue Z Q, Wu Q D, Li H 1991 Physics of Thin Films (Beijing: Electronic Industry Press) pp20-42 (in Chinese) [薛增泉, 吴全德, 李浩 1991 薄膜物理(北京: 电子工业出版社) 第20–42页]

    [25]

    Yoo J, Lee J, Kim S, Yoon K, Park I J, Dhungel S K, Karunagaran B, Mangalaraj D, Yi J 2005 Thin Solid Films 480-481 213

    [26]

    Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing: National Defense Industry Press) pp98-99 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1994 半导体物理学(北京: 国防工业出版社) 第98–99页]

    [27]

    Fay S, Steinhauser J, Oliveira N, Sauvain E V, Ballif C 2007 Thin Solid Films 515 8558

    [28]

    Fay S, Steinhauser J, Nicolay S, Ballif C 2010 Thin Solid Films 518 2961

    [29]

    Beneking C, Rech B, Wieder S, Kluth O, Wagner H, Frammelsberger W, Geyer R, Lechner P, Rubel H, Schade H 1999 Thin Solid Films 351 241

    [30]

    Loffler J, Groenen R, Linden J L, S,en M C M, Schropp R E I 2001 Thin Solid Films 392 315

    [31]

    Bhosle V, Tiwari A, Narayan J 2006 J. Appl. Phys. 100 0331-713

    [32]

    Meillaud F, Feltrin A, Despeisse M, Haug F J, Domine D, Python M, Soderstrom T, Cuony P, Boccard M, Nicolay S, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 127

    [33]

    Muller J, Rech B, Springer J, Vanecek M 2004 Solar Energy 77 917

    [34]

    Krc J, Lipovsek B, Bokalic M, Campa A, Oyama T, Kambe M, Matsui T, Sai H, Kondo M, Topic M 2010 Thin Solid Films 518 3054

    [35]

    Despeisse M, Battaglia C, Boccard M, Bugnon G, Charriere M, Cuony P, Hanni S, Lofgren L, Meillaud F, Parasc,olo G, Soderstrom T, Ballif C 2011 Phys. Status Solidi 208 1863

  • [1]

    Meier J, Spitznagel J, Kroll U, Bucher C, Fay S, Moriarty T, Shah A 2004 Thin Solid Films 451-452 518

    [2]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 物理学报 62 058801]

    [3]

    Steinhauser J, Fay S, Oliveira N, Vallat-Sauvain E, Ballif C 2007 Appl. Phys. Lett. 90 142107

    [4]

    Addonizio M L, Antonaia A 2009 Thin Solid Films 518 1026

    [5]

    Zhang C, Chen X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 23 (in Chinese) [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012物理学报 61 23]

    [6]

    Kubon M, Boehmer E, Siebke F, Rech B, Beneking C, Wagner H 1996 Sol. Energy Mater. Sol. Cells 41-42 485

    [7]

    Nuruddin A, Abelson J R 2001 Thin Solid Films 394 49

    [8]

    Lai K C, Liu C C, Lu C H, Yeh C H, Houng M P 2010 Sol. Energy Mater. Sol. Cells 94 397

    [9]

    Jerome S 2008 Low pressure chemical vapor deposited zinc oxide for silicon thin film solar cells Ph. D. Dissertation (Neuchatel: Universite of Neuchatel Institut of Microtechnique)

    [10]

    Stiebig H, Siebke F, Beyer W, Beneking C, Rech B, Wagner H 1997 Sol. Energy Mater. Sol. Cells 48 351

    [11]

    Ganguly G, Carlson D E, Hegedus S S, Ryan D, Gordon R G, Pang D, Reedy R C 2004 Appl. Phys. Lett. 85 3

    [12]

    Boccard M, Cuony P, Despeisse M, Domine D, Feltrin A, Wyrsch N, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 195

    [13]

    Aswin H, Taweewat K, Ihsanul A Y, Shinsuke M, Makoto K 2010 Appl. Phys. Express 3 051102

    [14]

    Steinhauser J, Boucher J F, Omnes E, Borrello D, Sauvain E V, Monteduro G, Marmelo M, Orhan J B, Wolf B, Bailat J, Benagli S, Meier J, Kroll U 2011 Thin Solid Films 520 1218

    [15]

    Soderstrom K, Bugnon G, Haug F J, Nicolay S, Ballif C 2012 Sol. Energy Mater. Sol. Cells 101 193

    [16]

    Boccard M, Battaglia C, Hanni S, SoderstromK, Escarre J, Nicolay S, Meillaud F, Despeisse M, Ballif C 2012 Nano Lett. 12 1344

    [17]

    Messerschmidt D, Nicolay S, Ding L, Bugnon G, Meillaud F, Eberhardt J, Ballif C 2013 J. Appl. Phys. 113 024908

    [18]

    Yan C B, Chen X L, Wang F, Sun J, Zhang D K, Wei C C, Zhang X D, Zhao Y, Geng X H 2012 Thin Solid Films 521 249

    [19]

    Battaglia C, Escarre J, Soderstrom K, Boccard M, Ballif C 2012 Energy Procedia 15 206

    [20]

    Chen X L, Xue J M, Zhang D K, Sun J, Ren H Z, Zhao Y, Geng X H 2007 Acta Phys. Sin. 56 1563 (in Chinese) [陈新亮, 薛俊明, 张德坤, 孙建, 任慧志, 赵颖, 耿新华 2007 物理学报 56 1563]

    [21]

    Saito T, Watanabe Y, Takahashi K, Matsuzawa T, Baosheng Sang, Konagai M 1997 Sol. Energy Mater. Sol. Cells 49 187

    [22]

    Nicolay S, Fay S, Ballif C 2009 Crystal Growth & Design 9 4957

    [23]

    Addonizio M L, Diletto C 2008 Sol. Energy Mater. Sol. Cells 92 1488

    [24]

    Xue Z Q, Wu Q D, Li H 1991 Physics of Thin Films (Beijing: Electronic Industry Press) pp20-42 (in Chinese) [薛增泉, 吴全德, 李浩 1991 薄膜物理(北京: 电子工业出版社) 第20–42页]

    [25]

    Yoo J, Lee J, Kim S, Yoon K, Park I J, Dhungel S K, Karunagaran B, Mangalaraj D, Yi J 2005 Thin Solid Films 480-481 213

    [26]

    Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing: National Defense Industry Press) pp98-99 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1994 半导体物理学(北京: 国防工业出版社) 第98–99页]

    [27]

    Fay S, Steinhauser J, Oliveira N, Sauvain E V, Ballif C 2007 Thin Solid Films 515 8558

    [28]

    Fay S, Steinhauser J, Nicolay S, Ballif C 2010 Thin Solid Films 518 2961

    [29]

    Beneking C, Rech B, Wieder S, Kluth O, Wagner H, Frammelsberger W, Geyer R, Lechner P, Rubel H, Schade H 1999 Thin Solid Films 351 241

    [30]

    Loffler J, Groenen R, Linden J L, S,en M C M, Schropp R E I 2001 Thin Solid Films 392 315

    [31]

    Bhosle V, Tiwari A, Narayan J 2006 J. Appl. Phys. 100 0331-713

    [32]

    Meillaud F, Feltrin A, Despeisse M, Haug F J, Domine D, Python M, Soderstrom T, Cuony P, Boccard M, Nicolay S, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 127

    [33]

    Muller J, Rech B, Springer J, Vanecek M 2004 Solar Energy 77 917

    [34]

    Krc J, Lipovsek B, Bokalic M, Campa A, Oyama T, Kambe M, Matsui T, Sai H, Kondo M, Topic M 2010 Thin Solid Films 518 3054

    [35]

    Despeisse M, Battaglia C, Boccard M, Bugnon G, Charriere M, Cuony P, Hanni S, Lofgren L, Meillaud F, Parasc,olo G, Soderstrom T, Ballif C 2011 Phys. Status Solidi 208 1863

  • [1] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [2] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [3] Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200021
    [4] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [5] Yin Yu-Ming, Zhao Ling-Ling. Effects of salt concentrations and pore surface structure on the water flow through rock nanopores. Acta Physica Sinica, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [6] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [7] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [8] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [9] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [10] Zou Ping, Lv Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [11] Zhang Song-Ran, He Dai-Hua, Tu Hua-Yao, Sun yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin. Magnetotransport properties and stress control of HgCdTe thin film. Acta Physica Sinica, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [12] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [13] Algethami Obaidallah A (Yi Bi), Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [14] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
  • Citation:
Metrics
  • Abstract views:  482
  • PDF Downloads:  1195
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2013
  • Accepted Date:  12 November 2013
  • Published Online:  05 March 2014

Improved properties of boron-doped zinc oxide films with In2O3:Sn interlayers for solar cells

  • 1. Institute of Photo-electronic Thin Film Devices and Technology, Tianjin Key laboratory of Photo-electronic Thin Film Devices and Technology, Key laboratory of Opto-electronic Information Science and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
Fund Project:  Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2011CBA00705, 2011CBA00706 2011CBA00707), the Major Science and Technology Support Project of Tianjin, China City (Grant No. 11TXSYGX22100), the Tianjin Applied Basic Research Project and Cutting-edge Technology Research Plan, China (Grant No. 13JCZDJC26900), the International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580), the National High Technology Research and Development Program of China (Grant No. 2013AA050302), and the Fundamental Research Funds for the Central Universities (Grant No. 65010341).

Abstract: Boron-doped zinc oxide (BZO) films with a natural pyramid-textured surface grown by metal organic chemical vapor deposition (MOCVD) have large light trapping effect in thin film silicon solar cells when used as front contact electrodes. However, the surface topography of traditional BZO films is so sharp as to damage the quality of the subsequent silicon thin film materials and to reduce the photovoltaic conversion efficiency of the solar cells. In this work, an ultra-thin In2O3:Sn(ITO)film (~ 4 nm) is used as the interlayer in the sandwiched structure of the multilayer films, i.e. glass/bottom BZO layer /ITO interlayer/top BZO layer. The surface properties can be improved through modulating the thickness of the top BZO layer. Appropriate thickness of top BZO layer and ITO interlayer are helpful for obtaining the cauliflower-like surface morphology and thus the sharp structure becomes relatively gentle, but the surface morphology still keeps a pyramid feature when depositing thicker top BZO layer. The relatively gentle surface morphology could promote crystallization quality ofc-Si:H thin film materials and reduce cracks in intrinsic layer and TCO/P-Si interface defects. Finally, this new sandwiched structure of multilayer ZnO films is applied in c-Si:H p-i-n thin film solar cells. Compared with traditional BZO films, the quantum efficiency (QE) of solar cells with a sandwiched structure of ZnO increases by about 10%, and both the open-circuit voltage (Voc) and short-circuit current density (Jsc) may increase and thus improve the solar cell efficiency.

Reference (35)

Catalog

    /

    返回文章
    返回