搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完全可积的非线性方程建立哈密顿理论的一般方法和对SG方程应用

蔡 浩 陈世荣 黄念宁

引用本文:
Citation:

完全可积的非线性方程建立哈密顿理论的一般方法和对SG方程应用

蔡 浩, 陈世荣, 黄念宁

General procedure to formulate Hamiltonian theory of the completely integrable n onlinear equations and its application to the sine-Gordon equation

Cai Hao, Chen Shi-Rong, Huang Nian-Ning
PDF
导出引用
  • 完全可积的非线性方程的单式矩阵的泊松括号已知可以表为对x的积分,指出被积函数一定 可以表为约斯特解对的直积的线性组合的微分,并可由直积矩阵相应元的对比确定组合系数 .从而解决了建立非线性方程哈密顿理论的一般方法.由于实验室系中的SG方程,相应的表述 异常复杂,所以以它为例来说明方法的实质.同时由于现有的相关工作违反了泊松括号同时 性的要求,给出了必要的改正.
    For a completely integrable nonlinear equation, the Poisson bracket of monodramy matrix is known to be expressed in a form of integral with respect to x. The in tegrand is found to be an x-differential of a linear combination of direct produ ct of two pairs of Jost solutions definitely, and the coefficients can be determ ined by comparing the corresponding elements of direct product matrices on two s ides. Hence a general procedure for constructing Hamiltonian formalism is given for a completely integrable nonlinear equation. As an example, the Hamiltonian t heory of sine-Gordon equation is re-examined, which shows the essence of the lin ear combination method for its very complicated Poisson bracket. And the previou s works involve, as is known, some inappropriate violating simultaneity of varia bles in Poisson bracket, which is also revised now.
    • 基金项目: 国家自然科学基金(批准号: 10071057)资助的课题.
  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [2] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [3] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
计量
  • 文章访问数:  6476
  • PDF下载量:  532
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-11-20
  • 修回日期:  2002-12-30
  • 刊出日期:  2003-09-20

/

返回文章
返回