搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏置磁极周期会切永磁场的理论分析

杜广星 钱宝良

引用本文:
Citation:

偏置磁极周期会切永磁场的理论分析

杜广星, 钱宝良

Theoretical analysis of the offset-pole periodic cusped permanent magnetic fields

Du Guang-Xing, Qian Bao-Liang
PDF
导出引用
  • 采用不同的近似方法对用于聚焦带状电子束传输的偏置磁极周期会切永磁场进行了理论分析,得到了两种不同形式的解析表达式,分别适用于数值计算和理论分析.首先,为了对偏置磁极周期会切永磁铁进行快速而又精确地数值仿真,利用表面电流带模型对其进行等效,得到了其激励的偏置磁极周期会切永磁场的解析表达式,并借助算例说明了表面电流带模型应用于等效偏置磁极周期会切永磁铁开展优化设计的高效性.然后,为了便于在将来开展对带状电子束传输的理论分析,按传统方法将偏置磁极周期会切永磁场分为两部分,一部分是磁极的无偏置部分激励的周期会切磁
    The magnetic field excited by the offset-pole periodic cusped permanent magnet (OPPCPM) used for focusing the sheet electron beam has been approximately expressed in two different forms for the convenience of future numerical calculation and theoretical analysis, respectively. Firstly, the surface-current-sheet model has been used to approximate the OPPCPM, and an accurate expression has been obtained using Biot-Savart law. This expression would rather be applied to numerical calculation than theoretical analysis because of the complication. The optimization of entrance taper of the OPPCPM has been performed as an example of application of the expression, implying the high efficiency of the calculation brought by the expression. Secondly, to obtain simple expression of the magnetic field for the convenience of future theoretical analysis, the OPPCPM field has been divided into two parts: the periodic cusped magnetic (PCM) field component and the side-focusing magnetic field component. The expressions of the PCM field component have been obtained using the method of undetermined coefficient, while the expressions of the other one have been obtained using two-magnetic-charge-sheet model. The results are useful to study the transportation of the sheet electron beam in the offset-pole PCM field.
    • 基金项目: 国家高技术研究发展计划(863)资助的课题.
    [1]

    [1]Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647

    [2]

    [2]Cheng S, Destler W W, Granatstein V L, Antonsen T M, Jr., Levush B, Rodgers J, Zhang Z X 1996 IEEE Trans. Plasma Sci. 24 750

    [3]

    [3]Carlsten B E 2005 Nucl. Instrum. Meth. A 550 14

    [4]

    [4]Zhou J, Chen C 2006 Phys. Rev. ST -Accel. Beams 9 104201

    [5]

    [5]Burke A, Besong V, Graniund K, Jensen A J, Jongewaard E, Phillips R, Rauenbuehler K, Scheitrum G, Steele R 2006 IEEE IVEC 485

    [6]

    [6]Humphries S, Russell S, Carlsten B E, Earley L 2005 IEEE Trans. Plasma Sci. 33 882

    [7]

    [7]Yang J H, Wang Y, Wang S Z 2007 High Power Laser and Particle Beams 19 643

    [8]

    [8]Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

    [9]

    [9]Booske J H, McVey B D, Antonsen T M Jr. 1993 J. Appl. Phys. 73 4140

    [10]

    ]Kyhl R L, Webster H F 1956 IRE Trans. Electron Devices ED-3 1720

    [11]

    ]Webster H F 1955 J. Appl. Phys. 26 1386

    [12]

    ]Davidson R C, Tsang K T, Uhm H S 1988 Phys. Fluids 31 1727

    [13]

    ]Uhm H S, Shahar Ben-Menahem, Yu D 1994 Phys. Plasmas 1 3686

    [14]

    ]Cheng S, Destler W W 1995 Nucl. Instrum. Meth. A 358 200

    [15]

    ]Halbach K 1981 Nucl. Instr. and Meth. 187 109

    [16]

    ]Tatchyn R 1996 Nucl. Instr. and Meth. A 375 500

    [17]

    ]Tatchyn R, Cremer T 1997 Nucl. Instr. and Meth. A 393 114

    [18]

    ]Mikhailichenko A 2001 Proc. Part. Accel. Conf. 3648

    [19]

    ]Biallas G, Benson S, Hiatt T, Neil G, Snyder M 2005 Proc. Particle Accel. Conf. 4093

    [20]

    ]Destler W W, Granatstein V L, Mayergoyz I D, Segalov Z 1986 J. Appl. Phys. 60 521

    [21]

    ]Varfolomeev A A, Bouzouloukov Yu P, Gubankov V V, Ivanchenkov S N, Khlebnikov A S, Osmanov N S, Tolmachev S V 1995 Nucl. Instrum. Meth. A 359 85

  • [1]

    [1]Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647

    [2]

    [2]Cheng S, Destler W W, Granatstein V L, Antonsen T M, Jr., Levush B, Rodgers J, Zhang Z X 1996 IEEE Trans. Plasma Sci. 24 750

    [3]

    [3]Carlsten B E 2005 Nucl. Instrum. Meth. A 550 14

    [4]

    [4]Zhou J, Chen C 2006 Phys. Rev. ST -Accel. Beams 9 104201

    [5]

    [5]Burke A, Besong V, Graniund K, Jensen A J, Jongewaard E, Phillips R, Rauenbuehler K, Scheitrum G, Steele R 2006 IEEE IVEC 485

    [6]

    [6]Humphries S, Russell S, Carlsten B E, Earley L 2005 IEEE Trans. Plasma Sci. 33 882

    [7]

    [7]Yang J H, Wang Y, Wang S Z 2007 High Power Laser and Particle Beams 19 643

    [8]

    [8]Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

    [9]

    [9]Booske J H, McVey B D, Antonsen T M Jr. 1993 J. Appl. Phys. 73 4140

    [10]

    ]Kyhl R L, Webster H F 1956 IRE Trans. Electron Devices ED-3 1720

    [11]

    ]Webster H F 1955 J. Appl. Phys. 26 1386

    [12]

    ]Davidson R C, Tsang K T, Uhm H S 1988 Phys. Fluids 31 1727

    [13]

    ]Uhm H S, Shahar Ben-Menahem, Yu D 1994 Phys. Plasmas 1 3686

    [14]

    ]Cheng S, Destler W W 1995 Nucl. Instrum. Meth. A 358 200

    [15]

    ]Halbach K 1981 Nucl. Instr. and Meth. 187 109

    [16]

    ]Tatchyn R 1996 Nucl. Instr. and Meth. A 375 500

    [17]

    ]Tatchyn R, Cremer T 1997 Nucl. Instr. and Meth. A 393 114

    [18]

    ]Mikhailichenko A 2001 Proc. Part. Accel. Conf. 3648

    [19]

    ]Biallas G, Benson S, Hiatt T, Neil G, Snyder M 2005 Proc. Particle Accel. Conf. 4093

    [20]

    ]Destler W W, Granatstein V L, Mayergoyz I D, Segalov Z 1986 J. Appl. Phys. 60 521

    [21]

    ]Varfolomeev A A, Bouzouloukov Yu P, Gubankov V V, Ivanchenkov S N, Khlebnikov A S, Osmanov N S, Tolmachev S V 1995 Nucl. Instrum. Meth. A 359 85

  • [1] 罗旭, 王丽红, 吕良, 曹书峰, 董学成, 赵建国. 基于面磁荷密度的金属磁记忆检测正演模型. 物理学报, 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [2] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性. 物理学报, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [3] 李维勤, 霍志胜, 蒲红斌. 电介质/半导体结构样品电子束感生电流瞬态特性. 物理学报, 2020, 69(6): 060201. doi: 10.7498/aps.69.20191543
    [4] 崔翔. 电流连续的细导体段模型的磁场及电感. 物理学报, 2020, 69(3): 034101. doi: 10.7498/aps.69.20191212
    [5] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [6] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [7] 李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰. 强流脉冲电子束诱发纯钛表面的微观结构及应力状态. 物理学报, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [8] 刘静, 舒挺, 李志强. 电子束空间极限电流的非线性理论研究. 物理学报, 2010, 59(4): 2622-2628. doi: 10.7498/aps.59.2622
    [9] 杜广星, 钱宝良. 准矩形截面强流相对论带状电子束的传输. 物理学报, 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [10] 王磊, 杨成韬, 解群眺, 叶井红. 双层纳米磁电薄膜模型及分析. 物理学报, 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [11] 沈惠杰, 温激鸿, 郁殿龙, 温熙森. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性. 物理学报, 2009, 58(12): 8357-8363. doi: 10.7498/aps.58.8357
    [12] 陈杰, 鲁习文. 基于磁荷面分布的舰船磁场预测方法. 物理学报, 2009, 58(6): 3839-3843. doi: 10.7498/aps.58.3839
    [13] 关庆丰, 陈 波, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束辐照下单晶铝中的堆垛层错四面体. 物理学报, 2008, 57(1): 392-397. doi: 10.7498/aps.57.392
    [14] 刘志坚, 江兴流, 乐小云, 文雄伟. 赝火花脉冲电子束传输中束斑分析. 物理学报, 2005, 54(9): 4229-4235. doi: 10.7498/aps.54.4229
    [15] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成. 物理学报, 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [16] 杨炳良, 刘百勇, 陈斗南, 郑耀宗. SiOxNy薄膜的微观结构与新的电流传输机理模型. 物理学报, 1991, 40(2): 289-296. doi: 10.7498/aps.40.289
    [17] 唐景昌, 唐叔贤. 光电子衍射谱Fourier变换分析方法的垂直单电子束模型. 物理学报, 1984, 33(3): 362-369. doi: 10.7498/aps.33.362
    [18] 童林夙. 电子束在周期场中的稳定性. 物理学报, 1964, 20(8): 761-776. doi: 10.7498/aps.20.761
    [19] 何国柱. 永久磁铁周期性聚焦电子束. 物理学报, 1959, 15(10): 535-549. doi: 10.7498/aps.15.535
    [20] 何国柱. 周期场聚焦电子束. 物理学报, 1958, 14(5): 376-392. doi: 10.7498/aps.14.376
计量
  • 文章访问数:  7989
  • PDF下载量:  796
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-17
  • 修回日期:  2009-07-08
  • 刊出日期:  2010-03-15

/

返回文章
返回