-
利用分子动力学方法,模拟了5000个表面轻微摩擦(=110-4)的弹性颗粒组成的体系在各向同性压缩过程中的堵塞(jamming)现象,研究了颗粒体系对边壁压强P和对关联函数第一个峰的高度g1随体积分数的变化规律. 结果表明,当体系的体积分数大于临界体积分数c时,P()曲线表现出明显的黏滑(stick-slip)行为,法向的力-力关联函数、切向的力-力关联函数和颗粒的位置-位置关联函数同时发生跳变,说明宏观黏滑现象源自内部的力位形和几何构形的调整. 体系在缓慢增大过程中得到了不同的堵塞态,随着颗粒粒径的缓慢减小,体系得以松弛(unjamming),实现松弛过程并得到相应的c. 对于不同堵塞态,其边壁压强P与-c遵从幂律标度P(-c)0.964.In this paper, the jamming/unjamming processes of the system composed of 5000 elastic disks with small friction =110-4 are simulated by using the molecular dynamics method. The variations of sidewall pressure P and the height of the first peak of the pair correlation function, g1, with packing fraction are studied. The result shows that the P() curve exhibits an obvious stick-slip-like behavior. The normal force-force correlation function, the tangential force-force correlation function, and the position-position correlation function are found to jump simultaneously during the stick-slip process. By relaxing jammed states obtained as the system undergoes the compression process, we observe that the P is related to -c by the power scaling law P(-c)0.964, although the different sidewall pressures corresponds to different values of c.
-
Keywords:
- jamming phase diagram /
- pair-correlation function /
- force-force correlation function /
- scaling law
[1] Liu A J, Nagel S R 1998 Nature 396 21
[2] [3] Trappe V, Prasad V, Cipelletti L, Segr P N, Weitz D A 2001 Nature 411 772
[4] [5] OHern C S, Silbert L E, Liu A J, Nagel S R 2003 Phys. Rev. E 68 011306
[6] [7] Drocco J A, Hastings M B, Olson Reichhardt C J, Reichhardt C 2005 Phys. Rev. Lett. 95 088001
[8] [9] Otsuki M, Hayakawa H 2009 Phys. Rev. E 80 011308
[10] [11] Brujic J, Song C, Wang P, Briscoe C, Marty G, Makse H A 2007 Phys. Rev. Lett. 98 248001
[12] OHern C S, Langer S A, Liu A J, Nagel S R 2002 Phys. Rev. Lett. 88 075507
[13] [14] Zhang Z, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230
[15] [16] [17] Cheng X 2010 Phys. Rev. E 81 031301
[18] Pica Ciamarra M, Lippiello E, Godano C, de Arcangelis L 2010 Phys. Rev. Lett. 104 238001
[19] [20] Fierro A, Nicodemi M, Tarzia M, de Candia A, Coniglio A 2005 Phys. Rev. E 71 061305
[21] [22] [23] Henkes S, Chakraborty B 2009 Phys. Rev. E 79 061301
[24] [25] Parisi G, Zamponi F 2010 Rev. Mod. Phys. 82 789
[26] Torquato S, Stillinger F H 2010 Rev. Mod. Phys. 82 2633
[27] -
[1] Liu A J, Nagel S R 1998 Nature 396 21
[2] [3] Trappe V, Prasad V, Cipelletti L, Segr P N, Weitz D A 2001 Nature 411 772
[4] [5] OHern C S, Silbert L E, Liu A J, Nagel S R 2003 Phys. Rev. E 68 011306
[6] [7] Drocco J A, Hastings M B, Olson Reichhardt C J, Reichhardt C 2005 Phys. Rev. Lett. 95 088001
[8] [9] Otsuki M, Hayakawa H 2009 Phys. Rev. E 80 011308
[10] [11] Brujic J, Song C, Wang P, Briscoe C, Marty G, Makse H A 2007 Phys. Rev. Lett. 98 248001
[12] OHern C S, Langer S A, Liu A J, Nagel S R 2002 Phys. Rev. Lett. 88 075507
[13] [14] Zhang Z, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R, Yodh A G 2009 Nature 459 230
[15] [16] [17] Cheng X 2010 Phys. Rev. E 81 031301
[18] Pica Ciamarra M, Lippiello E, Godano C, de Arcangelis L 2010 Phys. Rev. Lett. 104 238001
[19] [20] Fierro A, Nicodemi M, Tarzia M, de Candia A, Coniglio A 2005 Phys. Rev. E 71 061305
[21] [22] [23] Henkes S, Chakraborty B 2009 Phys. Rev. E 79 061301
[24] [25] Parisi G, Zamponi F 2010 Rev. Mod. Phys. 82 789
[26] Torquato S, Stillinger F H 2010 Rev. Mod. Phys. 82 2633
[27]
计量
- 文章访问数: 7553
- PDF下载量: 848
- 被引次数: 0