搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用Z-扫描技术研究卟啉铜偶合TiO2/SiO2有机-无机材料的非线性吸收特性

庄晓波 夏海平

引用本文:
Citation:

用Z-扫描技术研究卟啉铜偶合TiO2/SiO2有机-无机材料的非线性吸收特性

庄晓波, 夏海平

Nonlinear absorption properties of Cu(II)meso-tetra(4-sulfonatopheny1) porphine in TiO2/SiO2 organic-inorganic gel using Z-scan technique

Zhuang Xiao-Bo, Xia Hai-Ping
PDF
导出引用
  • 应用溶胶-凝胶技术, 成功地把5,10,15,20-四(4-磺酸苯基)卟啉铜掺杂到SiO2/TiO2无机凝胶中, 制备成有机-无机复合材料. 采用开孔Z-扫描技术, 使用波长532 nm、脉宽7ns的YAG脉冲激光为光源, 测定了不同浓度卟啉铜掺杂的SiO2/TiO2凝胶Z-扫描曲线. 应用Z扫描理论对获得的曲线进行分析与理论拟合, 得到复合材料的非线性吸收系数. 这些非线性吸收是由材料中卟啉铜的单聚体与二聚体的反饱和吸收所引起. 研究表明, 随着掺杂浓度的增大, 复合材料的非线性吸收明显增强. 掺杂浓度为1.11×10-4 (A2), 1.48×10-4 (A3)与3.01×10-4 mol/L (A4)凝胶的非线性吸收系数分别为1.705×10-11, 1.892×10-11和4.854×10-11 m/W. 讨论了单聚体与二聚体的浓度变化对非线性吸收的影响. 随着掺杂浓度的增加, 凝胶中二聚体与多聚体含量的增加, 导致非线性吸收系数的增大. 同时测定了无机材料对该光源的抗激光损伤阈值为~5 J/cm2.
    The Cu(II)meso-tetra(4-sulfonatopheny1) porphines (Cu(II)-TPPS) with various concentrations are incorporated into TiO2/SiO2 to form organic and inorganic composite gels via sol-gel process. With a Nd:YAG laser of 532 nm wavelength and 7 ns pulse width, the curves of Z-scan are measured under the condition of open aperture. Nonlinear absorption parameters of these materials, which are attributed to the reverse saturation absorptions of monomer and dimer of Cu(II)-TPPS, are obtained by fitting the above curves with Z-scan theroy. The result indicates that the nonlinear parameter of gel increases with doping concentration increasing. The nonlinear absorption coefficients of gels in 1.11×10-4 mol/L A2, 1.48×10-4 mol/L A3 and 3.01×10-4 mol/L A4 doping concentration are 1.705×10-11, 1.892×10-11, and 4.854×10-11 m/W, respectively. The effects of monomer and dimer on the nonlinear parameter are discussed. The reduction of the nonlinear parameter results from the increases of dimer and multimer as the doping concentration increases. The damage threshold of the gel is also measured and can reach up to ~5 J/cm2.
    • 基金项目: 国家自然科学基金(批准号: 50972061);浙江省自然科学基金(批准号: R4100364);宁波市自然科学基金(批准号: 2012A610115)和宁波大学王宽诚幸福基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50972061), the Natural Science Foundation of Zhejiang Province, China (Grant No. R4100364), the Natural Science Foundation of Ningbo, China (Grant No. 2012A610115), and K. C. Wang Magna Fund in Ningbo University.
    [1]

    Shekhar G, Keith K, Pamela P 1992 Opt. Lett. 17 264

    [2]

    Cai X W, Liu C Y, Ding X M, Gu Y, Liu F G 2005 J. Opt. Laser 3 376 (in Chinese) [蔡雄伟, 刘承宜, 丁新民, 顾瑛, 刘凡光 2005 光电子· 激光 3 376]

    [3]

    Bezerra A G, Borissevitch I E, Gomes A S L 2000 Opt. Lett. 25 323

    [4]

    Chen H X, Yan M, Song W B 2002 New Chemical Materials 30 35 (in Chinese) [陈红祥, 严煤, 孙文博 2002 化工新型材料 30 35]

    [5]

    Dou K, Sun X D, Wang X J, Parkhill R, Guo Y, Knobbe E T 1999 IEEE J. Quantum Electron. 35 1004

    [6]

    Arun K S, Bipin B, Braja K M, Chen L 1995 Macromolecules 28 5681

    [7]

    Sheik B M, Said A A, Wei T W 1990 IEEE J. Quantum Electron. 26 760

    [8]

    Zhang X H, Wang D J, Xia H P 2011 Acta Phys. Sin. 60 024210 (in Chinese) [张晓荷, 王冬杰, 夏海平 2011 物理学报 60 024210]

    [9]

    Wan Q, Wang T H, Lin C L 2003 Nanotechnology 14 L15

    [10]

    Hyun S C, Hanju R, Jae K S 2003 J. Am. Chem. Soc. 125 5850

    [11]

    Zhang X H, Xia H P, Wang D J 2011 J. Chin Ceram Soc. 39 125 (in Chinese) [张晓荷, 夏海平, 王冬杰 2011 硅酸盐学报 39 125]

    [12]

    He Y H, Hui R J, Yi Y P, Shuai Z G 2008 Acta Phys. Chim. Sin. 24 565 (in Chinese) [何远航, 惠仁杰, 易院平, 帅志刚 2008 物理化学学报 24 565]

    [13]

    Zhang B, Liu Z B, Chen S Q, Zhou W Y, Zang W P, Tian J G, Luo D B, Zhu Z A 2007 Acta Phys. Sin. 56 5252 (in Chinese) [张冰, 刘智波, 陈树琪, 周文远, 臧维平, 田建国, 罗代兵, 朱志昂 2007 物理学报 56 5252]

    [14]

    Sun J, Fan H L, Wang X Q 2009 Chin. Opt. Lett. 9 2417 (in Chinese) [孙晶, 范贺良, 王新强 2009 中国激光 9 2417]

    [15]

    Zhang K, Wang F F, Zhu B H, Gu Y Z, Guo L J 2010 Acta Photon. Sin. 39 11 (in Chinese) [张琨, 王芳芳, 朱宝华, 顾玉宗, 郭立俊 2010 光子学报 31 11]

  • [1]

    Shekhar G, Keith K, Pamela P 1992 Opt. Lett. 17 264

    [2]

    Cai X W, Liu C Y, Ding X M, Gu Y, Liu F G 2005 J. Opt. Laser 3 376 (in Chinese) [蔡雄伟, 刘承宜, 丁新民, 顾瑛, 刘凡光 2005 光电子· 激光 3 376]

    [3]

    Bezerra A G, Borissevitch I E, Gomes A S L 2000 Opt. Lett. 25 323

    [4]

    Chen H X, Yan M, Song W B 2002 New Chemical Materials 30 35 (in Chinese) [陈红祥, 严煤, 孙文博 2002 化工新型材料 30 35]

    [5]

    Dou K, Sun X D, Wang X J, Parkhill R, Guo Y, Knobbe E T 1999 IEEE J. Quantum Electron. 35 1004

    [6]

    Arun K S, Bipin B, Braja K M, Chen L 1995 Macromolecules 28 5681

    [7]

    Sheik B M, Said A A, Wei T W 1990 IEEE J. Quantum Electron. 26 760

    [8]

    Zhang X H, Wang D J, Xia H P 2011 Acta Phys. Sin. 60 024210 (in Chinese) [张晓荷, 王冬杰, 夏海平 2011 物理学报 60 024210]

    [9]

    Wan Q, Wang T H, Lin C L 2003 Nanotechnology 14 L15

    [10]

    Hyun S C, Hanju R, Jae K S 2003 J. Am. Chem. Soc. 125 5850

    [11]

    Zhang X H, Xia H P, Wang D J 2011 J. Chin Ceram Soc. 39 125 (in Chinese) [张晓荷, 夏海平, 王冬杰 2011 硅酸盐学报 39 125]

    [12]

    He Y H, Hui R J, Yi Y P, Shuai Z G 2008 Acta Phys. Chim. Sin. 24 565 (in Chinese) [何远航, 惠仁杰, 易院平, 帅志刚 2008 物理化学学报 24 565]

    [13]

    Zhang B, Liu Z B, Chen S Q, Zhou W Y, Zang W P, Tian J G, Luo D B, Zhu Z A 2007 Acta Phys. Sin. 56 5252 (in Chinese) [张冰, 刘智波, 陈树琪, 周文远, 臧维平, 田建国, 罗代兵, 朱志昂 2007 物理学报 56 5252]

    [14]

    Sun J, Fan H L, Wang X Q 2009 Chin. Opt. Lett. 9 2417 (in Chinese) [孙晶, 范贺良, 王新强 2009 中国激光 9 2417]

    [15]

    Zhang K, Wang F F, Zhu B H, Gu Y Z, Guo L J 2010 Acta Photon. Sin. 39 11 (in Chinese) [张琨, 王芳芳, 朱宝华, 顾玉宗, 郭立俊 2010 光子学报 31 11]

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231126
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [4] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [5] 王富杰, 曹晓昱, 高超, 文雪可, 雷兵. 基于矢量光场空间调制的光波偏振方向解算方法研究. 物理学报, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [6] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [7] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [8] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [9] 陈鑫洁, 张敬娜, 张慧滔, 夏迪梦, 徐文峰, 朱溢佞, 赵星. 基于CT扫描数据的X射线能谱估计方法. 物理学报, 2023, 72(11): 118701. doi: 10.7498/aps.72.20222307
    [10] 张天成, 潘高远, 俞友军, 董晨钟, 丁晓彬. 超重元素Og(Z=118)及其同主族元素的电离能和价电子轨道束缚能. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220813
    [11] 钟东洲, 曾能, 杨华, 徐喆. 外部光注入的光泵浦自旋垂直腔表面发射激光器中的两个混沌偏振分量对两个复杂形状目标中的多区域精确测距. 物理学报, 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [12] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [13] 任波, 佘彦超, 徐小凤, 叶伏秋. 高阶效应下对称三量子点系统中光孤子稳定性研究. 物理学报, 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [14] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [15] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [16] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [17] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [18] 王行政, 杨晨静, 蔡历恒, 陈东. 基于香蕉形液晶分子自组装的纳米螺旋丝有机凝胶及其流变特性. 物理学报, 2020, 69(8): 086102. doi: 10.7498/aps.69.20200332
    [19] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [20] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
计量
  • 文章访问数:  5274
  • PDF下载量:  453
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-13
  • 修回日期:  2012-03-14
  • 刊出日期:  2012-09-05

/

返回文章
返回