-
针对传统直接序列扩频、M元扩频和码元移位键控扩频水声通信速率低的问题, 基于小Kasami序列优良的自相关和互相关特性,提出了M元扩频和码元移位键控扩频两者相结合的水声扩频通信新方法.不仅利用了不同的序列信息,还利用了相同序列的扩频码相位信息. 对于自相关和互相关函数在加性高斯白噪声和衰落信道下对M元码元移位键控扩频这种水声通信方法的影响进行了分析,并分别在两种信道下对其性能进行仿真,仿真结果表明在同等通信速率下M元码元移位键控扩频的抗噪声能力要高于直接序列扩频、M元扩频和码元移位键控扩频. 在水池对M元扩频、码元移位键控扩频和M元码元移位键控这三种情况进行了比较性实验. 在104比特的数据量下,实现了253.6 bps通信速率的M元码元移位键控无误码传输.Aiming at the low data rate of traditional direct sequence spread spectrum, M-ary spread spectrum and code shift keying underwater acoustic spread spectrum communication, a new combine method of M-ary code shift keying underwater acoustic spread spectrum communication is proposed based on the small Kasami sequence with good self and mutual correlation. Different sequence information and the same sequence code phase information are used in this method. The influences of self and mutual correlation function on M-ary code shift keying underwater acoustic spread spectrum communication over gaussian and fading channel are analyzed. The performances under the two kinds of channels are simulated. The simulation shows that the ability for M-ary code shift spread spectrum to overcome the noise is better than for the direct sequence spread spectrum, M-ary spread spectrum and code shift keying spread spectrum. The comparative experiment is conducted to compare the M-ary spread spectrum, code shift keying spread spectrum and M-ary code shift keying spread spectrum in the pool. The M-ary code shift keying communication rate of 256.3 bps with no transmitting error in 104 bit data volume is realized.
-
Keywords:
- underwater acoustic communication /
- spread spectrum /
- M-ary /
- code shift keying
[1] Yang L L, Hanzo L 1999 IEEE Trans. Veh. Technol. 48 1984
[2] Bystrom M, Modestino J W 2001 IEEE Trans. Commun. 49 1142
[3] Xiao P, Strom E G 2005 IEEE Trans. Veh. Technol. 54 1400
[4] Hong E S, Kim K J, Whang K C 1996 IEEE Trans. Veh. Technol. 45 57
[5] Yang L L, Hanzo L 2002 IEEE Trans. Commun. 50 956
[6] Yang L L, Hanzo L 2003 IEEE Trans. Commun. 51 748
[7] Stojanovic M, Freitag L 2006 IEEE Oceanic Eng. 31 685
[8] Tsimenidis C C, Hinton O R, Adams A E, Sharif B S 2001 IEEE Oceanic Eng. 26 594
[9] Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 慧娟 2007 物理学报 56 5915]
[10] Madhukumar A S, Chin F 2004 IEEE Trans. Wireless Commun. 3 1363
[11] Chiang C T 2004 IEEE Proc. Commum. 151 574
[12] Wang H B, Wu L X 2004 Acta Acoustic 29 161 (in Chinese) [王海滨, 吴立新 2004 声学学报 29 161]
[13] He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 物理学报 58 8379]
-
[1] Yang L L, Hanzo L 1999 IEEE Trans. Veh. Technol. 48 1984
[2] Bystrom M, Modestino J W 2001 IEEE Trans. Commun. 49 1142
[3] Xiao P, Strom E G 2005 IEEE Trans. Veh. Technol. 54 1400
[4] Hong E S, Kim K J, Whang K C 1996 IEEE Trans. Veh. Technol. 45 57
[5] Yang L L, Hanzo L 2002 IEEE Trans. Commun. 50 956
[6] Yang L L, Hanzo L 2003 IEEE Trans. Commun. 51 748
[7] Stojanovic M, Freitag L 2006 IEEE Oceanic Eng. 31 685
[8] Tsimenidis C C, Hinton O R, Adams A E, Sharif B S 2001 IEEE Oceanic Eng. 26 594
[9] Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 慧娟 2007 物理学报 56 5915]
[10] Madhukumar A S, Chin F 2004 IEEE Trans. Wireless Commun. 3 1363
[11] Chiang C T 2004 IEEE Proc. Commum. 151 574
[12] Wang H B, Wu L X 2004 Acta Acoustic 29 161 (in Chinese) [王海滨, 吴立新 2004 声学学报 29 161]
[13] He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 物理学报 58 8379]
计量
- 文章访问数: 7341
- PDF下载量: 541
- 被引次数: 0