搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩频码的单载波迭代频域均衡水声通信

何成兵 黄建国 孟庆微 张群飞 史文涛

引用本文:
Citation:

基于扩频码的单载波迭代频域均衡水声通信

何成兵, 黄建国, 孟庆微, 张群飞, 史文涛

PN-based single carrier block transmission with iterative frequency domain equalization over underwater acoustic channels

He Cheng-Bing, Huang Jian-Guo, Meng Qing-Wei, Zhang Qun-Fei, Shi Wen-Tao
PDF
导出引用
  • 单载波时域均衡在长时延扩展水声信道中计算量大,并对接收机参数的选择较为敏感,可靠性低,而正交频分复用信号峰均功率比高、对频率偏移敏感. 针对这些问题,提出基于扩频码的单载波块传输高速率水声通信方法和基于T/4分数间隔迭代频域均衡的接收机算法. 该接收机利用已知扩频码进行信道估计以及对由多普勒偏移引起的旋转相位进行估计,并通过一种低复杂度迭代频域均衡算法改善系统性能. 开展了湖上实验研究,结果表明在浅水1.8 km距离且复杂多径干扰条件下,利用BPSK/QPSK调制可实现10-2–10-4的误码率并达到1500–3000 bit/s的有效数据率.
    Single carrier modulation with time-domain equalization (SC-TDE) in underwater acoustic channel is sensitive to receiver parameters and its computational complexity is very high. Orthogonal frequency division multiplexing (OFDM) signal has high peak-to-average power ratio (PAPR) and is sensitive to Doppler shift. Aiming at these problems, this paper proposes the pseudo-noise (PN)-based single carrier block transmissions through underwater acoustic channels and corresponding receiver algorithms. The receiver employs PN signals for residual Doppler shift estimation, and channel estimation. A low complexity T/4 fractional iterative frequency domain equalizer is introduced to improve the system performance. One underwater acoustic communication system has been designed and tested in a lake in November 2011. At a distance of 1.8 km under a complex channel condition, the useful data rates of around 1500 and 3000 bps are achieved with un-coded bit error rates 10-2–10-4 in the lake experiment.
    • 基金项目: 国家自然科学基金(批准号:61101102,61271415)、高等学校博士学科点专项科研基金(批准号:20106102120011)和西北工业大学基础研究基金(批准号:JC20120219)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61101102, 61271415), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20106102120011), and the NPU Foundation for Fundamental Research, China (Grant No. JC20120219).
    [1]

    Kilfoyle D, Baggeroer A 2000 IEEE J. Ocean. Eng. 25 4

    [2]

    Stojanovic M, Catipovic J A, Proakis J G 1994 IEEE J. Ocean. Eng. 19 100

    [3]

    Huang J G, Sun J, He C B, Shen X H, Zhang Q F 2005 IEEE MAPE

    [4]

    Li B, Zhou S, Stojanovic M, Freitag L, Willett P 2008 IEEE J. Ocean. Eng. 33 198

    [5]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 物理学报 58 8379]

    [6]

    He C B, Huang J G, Ding Z 2009 IEEE J. Ocean. Eng. 33 4

    [7]

    He C B, Huang J G, Yan Z H, Zhqng Q F 2011 Sci. China Inf. Sci. 54 1747

    [8]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 惠娟 2007 物理学报 56 5915]

    [9]

    Yu Y, Zhou F, Qiao G 2012 Acta Phys. Sin. 61 234301 (in Chinese) [于洋, 周锋, 乔钢 2012 物理学报 61 234301]

    [10]

    Falconer D, Ariyavisitakul S L, Benyamin-Seeyar A, Eidson B 2002 IEEE Communications Magazine 40 4

    [11]

    Pancaldi F, Vitetta G M, Kalbasi R, AI-Dhahir N, Uysal M and Mheidat H 2008 IEEE Signal Process. Mag. 25 5

    [12]

    Zheng Y R, Xiao C, Yang T C and Yang W B 2010 Elsevier Journal on Physical Communication 3 1

    [13]

    Zhang C, Wang Z C, Pan C Y, Chen S and Hanzo L 2011 IEEE Trans. On Vehicular Technology 60 3

  • [1]

    Kilfoyle D, Baggeroer A 2000 IEEE J. Ocean. Eng. 25 4

    [2]

    Stojanovic M, Catipovic J A, Proakis J G 1994 IEEE J. Ocean. Eng. 19 100

    [3]

    Huang J G, Sun J, He C B, Shen X H, Zhang Q F 2005 IEEE MAPE

    [4]

    Li B, Zhou S, Stojanovic M, Freitag L, Willett P 2008 IEEE J. Ocean. Eng. 33 198

    [5]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 物理学报 58 8379]

    [6]

    He C B, Huang J G, Ding Z 2009 IEEE J. Ocean. Eng. 33 4

    [7]

    He C B, Huang J G, Yan Z H, Zhqng Q F 2011 Sci. China Inf. Sci. 54 1747

    [8]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 惠娟 2007 物理学报 56 5915]

    [9]

    Yu Y, Zhou F, Qiao G 2012 Acta Phys. Sin. 61 234301 (in Chinese) [于洋, 周锋, 乔钢 2012 物理学报 61 234301]

    [10]

    Falconer D, Ariyavisitakul S L, Benyamin-Seeyar A, Eidson B 2002 IEEE Communications Magazine 40 4

    [11]

    Pancaldi F, Vitetta G M, Kalbasi R, AI-Dhahir N, Uysal M and Mheidat H 2008 IEEE Signal Process. Mag. 25 5

    [12]

    Zheng Y R, Xiao C, Yang T C and Yang W B 2010 Elsevier Journal on Physical Communication 3 1

    [13]

    Zhang C, Wang Z C, Pan C Y, Chen S and Hanzo L 2011 IEEE Trans. On Vehicular Technology 60 3

计量
  • 文章访问数:  1881
  • PDF下载量:  855
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-08
  • 修回日期:  2013-09-09
  • 刊出日期:  2013-12-05

基于扩频码的单载波迭代频域均衡水声通信

  • 1. 西北工业大学航海学院, 西安 710072
    基金项目: 

    国家自然科学基金(批准号:61101102,61271415)、高等学校博士学科点专项科研基金(批准号:20106102120011)和西北工业大学基础研究基金(批准号:JC20120219)资助的课题.

摘要: 单载波时域均衡在长时延扩展水声信道中计算量大,并对接收机参数的选择较为敏感,可靠性低,而正交频分复用信号峰均功率比高、对频率偏移敏感. 针对这些问题,提出基于扩频码的单载波块传输高速率水声通信方法和基于T/4分数间隔迭代频域均衡的接收机算法. 该接收机利用已知扩频码进行信道估计以及对由多普勒偏移引起的旋转相位进行估计,并通过一种低复杂度迭代频域均衡算法改善系统性能. 开展了湖上实验研究,结果表明在浅水1.8 km距离且复杂多径干扰条件下,利用BPSK/QPSK调制可实现10-2–10-4的误码率并达到1500–3000 bit/s的有效数据率.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回