搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

簇间连接方式不同的簇网络的同步过程研究

冯聪 邹艳丽 韦芳琼

引用本文:
Citation:

簇间连接方式不同的簇网络的同步过程研究

冯聪, 邹艳丽, 韦芳琼

Synchronization processes in clustered networks with different inter-cluster couplings

Feng Cong, Zou Yan-Li, Wei Fang-Qiong
PDF
导出引用
  • 本文对簇间连接方式不同的三类簇网络的同步能力和同步过程进行研究. 构成簇网络的两个子网均为BA无标度网络, 当簇间连接方式是双向耦合时, 称其为TWD网络模型, 当簇间连接是大子网驱动小子网时, 称其为BDS网络模型, 当簇间连接是小子网驱动大子网时, 称其为SDB网络模型. 研究表明, 当小子网和大子网节点数目的比值大于某一临界值时, TWD网络模型的同步能力大于BDS网络模型的同步能力, 当该比值小于某一临界值时, TWD网络模型的同步能力小于BDS网络模型的同步能力, SDB网络模型的同步能力是三种网络结构中最差的. 对于簇间连接具有方向性的单向驱动网络, 簇网络的整体同步能力与被驱动子网的节点数和簇间连接数有关, 与驱动网络自身节点数无关. 增加簇间连接数在开始时会降低各子网的同步速度, 但最终各子网到达完全同步的时间减少, 网络的整体同步能力增强. 文中以Kuramoto相振子作为网络节点, 研究了不同情况下三种簇网络的同步过程, 证明了所得结论的正确性.
    This paper studies the synchronizability and the synchronization processes of three kinds of clustered networks with different inter-cluster couplings, where each clustered network is composed of two BA scale-free subnets. The clustered network is called a TWD network if the inter-cluster coupling is a two-way coupling, but it is called a BDS network if the small subnet is driven by the big one, and is called an SDB network if the big subnet is driven by the small one. The result shows that when the ratio of node number of small subnet to that of big one is larger than a critical value, the whole synchronizability of the TWD networks is better than that of the BDS networks; however, when this ratio is smaller than the critical value, the whole synchronizability of the TWD networks is weaker than that of the BDS ones, the whole synchronizability of the SDB networks is always the worst. For a one-way-driven clustered network, the synchronizability is just related to the node number of the driven subnet and the number of the inter-links, but has nothing to do with the node number of the driving subnet. The increase in the inter-links can reduce the synchronous speed of the subnet at the beginning but may enhance the synchronizability of the whole network eventually. The Kuramoto phase oscillators are taken as the network nodes to further study the synchronization process of the three-clustered networks for different cases, and the correctness of the above conclusions are evidenced.
    • 基金项目: 国家自然科学基金(批准号: 11062001, 11165003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11062001, 11165003).
    [1]

    Wang X F, Li X, Chen G R 2006 Theory and Applications of complex network (1st Ed.) (Beijing: Tsinghua University Press) 162-164, 194-199, 299-332

    [2]

    Wasserman S, Faust K 1994 Social network analysis: Methord and applications (1st Ed.) (Cambridge: Cambridge University press) 35-41

    [3]

    Scott J 2000 Social Network Analysis: A Handbook (2nd ed.)(SAGE Publications) 123-165

    [4]

    Patrick N, McGraw, Menzinger M 2005 Phys. Rev. E 72 015101

    [5]

    Lai D R, Nardini C, Lu H T 2011 Phys. Rev. E 83 016115

    [6]

    Leicht E A, Clarksou G, Shedden K, Newman M E J 2007 Europhys. B 59 75

    [7]

    Wang X F 2002 Int. J. Bifurcation Chaos 12 885

    [8]

    Lar D R 2011 Ph. D. Dissertation (Shanghai Jiaotong Universty) (in Chinese) [赖大荣 2011 博士学位论文(上海: 上海交通大学)]

    [9]

    Juan A, Acebrón, Bonilla L L, Conrad J, Pérez Vicente, Félix Ritort, Renato Spigler 2005 Rev. Mod. Phys. 77 137

    [10]

    Moreno Y, Pacheco A F 2004 Europhys. Lett. 68 603

    [11]

    Sorrentino F, Ott E 2007 Phys. Rev. E 76 056114

    [12]

    Zou Y L, Zhu J, Chen G 2006 Phys. Rev. E 74 046107

    [13]

    Zou Y L, Chen G 2008 Europhys. Lett. 84 58005

    [14]

    Zou Y L, Chen G 2009 Phys. A 388 2931

    [15]

    Zou Y L, Chen G 2009 Chin. Phys. B 18 3337

    [16]

    Zhu T X, Wu Y, Xiao J H 2012 Acta Phys. Sin. 61 040502 (in Chinese) [朱廷祥, 吴晔, 肖井华 2012 物理学报 61 040502]

    [17]

    Ma X J, Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟, 王延, 郑志刚 2009 物理学报 58 4426]

    [18]

    Sun Y Z, Tang Y F 2010 Chin. Phys. B 19 020506

    [19]

    Lu X Q, Austin F, Chen S H 2010 Chin. Phys. Lett. 27 050503

  • [1]

    Wang X F, Li X, Chen G R 2006 Theory and Applications of complex network (1st Ed.) (Beijing: Tsinghua University Press) 162-164, 194-199, 299-332

    [2]

    Wasserman S, Faust K 1994 Social network analysis: Methord and applications (1st Ed.) (Cambridge: Cambridge University press) 35-41

    [3]

    Scott J 2000 Social Network Analysis: A Handbook (2nd ed.)(SAGE Publications) 123-165

    [4]

    Patrick N, McGraw, Menzinger M 2005 Phys. Rev. E 72 015101

    [5]

    Lai D R, Nardini C, Lu H T 2011 Phys. Rev. E 83 016115

    [6]

    Leicht E A, Clarksou G, Shedden K, Newman M E J 2007 Europhys. B 59 75

    [7]

    Wang X F 2002 Int. J. Bifurcation Chaos 12 885

    [8]

    Lar D R 2011 Ph. D. Dissertation (Shanghai Jiaotong Universty) (in Chinese) [赖大荣 2011 博士学位论文(上海: 上海交通大学)]

    [9]

    Juan A, Acebrón, Bonilla L L, Conrad J, Pérez Vicente, Félix Ritort, Renato Spigler 2005 Rev. Mod. Phys. 77 137

    [10]

    Moreno Y, Pacheco A F 2004 Europhys. Lett. 68 603

    [11]

    Sorrentino F, Ott E 2007 Phys. Rev. E 76 056114

    [12]

    Zou Y L, Zhu J, Chen G 2006 Phys. Rev. E 74 046107

    [13]

    Zou Y L, Chen G 2008 Europhys. Lett. 84 58005

    [14]

    Zou Y L, Chen G 2009 Phys. A 388 2931

    [15]

    Zou Y L, Chen G 2009 Chin. Phys. B 18 3337

    [16]

    Zhu T X, Wu Y, Xiao J H 2012 Acta Phys. Sin. 61 040502 (in Chinese) [朱廷祥, 吴晔, 肖井华 2012 物理学报 61 040502]

    [17]

    Ma X J, Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟, 王延, 郑志刚 2009 物理学报 58 4426]

    [18]

    Sun Y Z, Tang Y F 2010 Chin. Phys. B 19 020506

    [19]

    Lu X Q, Austin F, Chen S H 2010 Chin. Phys. Lett. 27 050503

  • [1] 杨青林, 王立夫, 李欢, 余牧舟. 基于相对距离的复杂网络谱粗粒化方法. 物理学报, 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848
    [2] 孙娟, 李晓霞, 张金浩, 申玉卓, 李艳雨. 多层单向耦合星形网络的特征值谱及同步能力分析. 物理学报, 2017, 66(18): 188901. doi: 10.7498/aps.66.188901
    [3] 徐明明, 陆君安, 周进. 两层星形网络的特征值谱及同步能力. 物理学报, 2016, 65(2): 028902. doi: 10.7498/aps.65.028902
    [4] 王小娟, 宋梅, 郭世泽, 杨子龙. 基于有向渗流理论的关联微博转发网络信息传播研究. 物理学报, 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [5] 侯凤贞, 戴加飞, 刘新峰, 黄晓林. 基于网络连接度指标的脑梗死患者脑电信号相同步分析. 物理学报, 2014, 63(4): 040506. doi: 10.7498/aps.63.040506
    [6] 邓奇湘, 贾贞, 谢梦舒, 陈彦飞. 基于有向网络的Email病毒传播模型及其震荡吸引子研究. 物理学报, 2013, 62(2): 020203. doi: 10.7498/aps.62.020203
    [7] 王立明, 吴峰. 耦合分数阶双稳态振子的同步、反同步与振幅死亡. 物理学报, 2013, 62(21): 210504. doi: 10.7498/aps.62.210504
    [8] 刘金良. 具有随机节点结构的复杂网络同步研究. 物理学报, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [9] 王丹, 郝彬彬. 一类高聚类系数的加权无标度网络及其同步能力分析. 物理学报, 2013, 62(22): 220506. doi: 10.7498/aps.62.220506
    [10] 朱廷祥, 吴晔, 肖井华. 一种有效的提高复杂网络同步能力的自适应方法. 物理学报, 2012, 61(4): 040502. doi: 10.7498/aps.61.040502
    [11] 王丹, 井元伟, 郝彬彬. 扩展HK网络结构与同步能力的研究. 物理学报, 2012, 61(22): 220511. doi: 10.7498/aps.61.220511
    [12] 王丹, 井元伟, 郝彬彬. 加权方式对网络同步能力的影响. 物理学报, 2012, 61(17): 170513. doi: 10.7498/aps.61.170513
    [13] 吴勇峰, 张世平, 孙金玮, Peter Rolfe, 李智. 脉冲激励下环形耦合Duffing振子间的瞬态同步突变现象. 物理学报, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [14] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [15] 戴存礼, 赵艳艳, 吴威, 曾伦武. 移动Ad Hoc网络动力学同步能力的研究. 物理学报, 2010, 59(11): 7719-7723. doi: 10.7498/aps.59.7719
    [16] 马晓娟, 王延, 郑志刚. 叶子节点对于网络同步能力影响的研究. 物理学报, 2009, 58(7): 4426-4430. doi: 10.7498/aps.58.4426
    [17] 郝建红, 李 伟. 混沌吸引子在两个周期振子耦合下的相同步. 物理学报, 2005, 54(8): 3491-3496. doi: 10.7498/aps.54.3491
    [18] 马文麒, 杨承辉. 一类耦合非线性振子同步混沌Hopf分岔及其电路仿真. 物理学报, 2005, 54(3): 1064-1070. doi: 10.7498/aps.54.1064
    [19] 莫晓华, 唐国宁. 采用振幅耦合方法研究多旋转中心混沌振子的相同步. 物理学报, 2004, 53(7): 2080-2083. doi: 10.7498/aps.53.2080
    [20] 马文麒, 杨俊忠, 刘文吉, 包 刚, 胡 岗. 混沌振子的广义旋转数和同步混沌的Hopf分岔. 物理学报, 1999, 48(5): 787-794. doi: 10.7498/aps.48.787
计量
  • 文章访问数:  6156
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-02
  • 修回日期:  2012-11-20
  • 刊出日期:  2013-04-05

/

返回文章
返回