搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类可以产生独立同分布密钥流的混沌系统

徐正光 田清 田立

引用本文:
Citation:

一类可以产生独立同分布密钥流的混沌系统

徐正光, 田清, 田立

A class of topologically conjugated chaotic maps of tent map to generate independently and uniformly distributed chaotic key stream

Xu Zheng-Guang, Tian Qing, Tian Li
PDF
导出引用
  • 构造了一类与帐篷映射拓扑同构的混沌系统, 并根据拓扑共轭变换关系给出了此类混沌系统产生独立、均匀分布密钥流序列的采样规则. 理论证明和数值模拟, 均验证了结论的有效性. 本文为产生独立同分布密钥流提供了更多的非线性系统选择. 实验结果证明利用本文定理产生的密钥流能够通过美国信息技术管理改革法案的随机数检测标准(FIPS PUB 140-2)和美国国家标准与技术研究院安全检测标准(NIST SP800-22), 符合密钥流的选取标准.
    In this paper, a class of topologically conjugated maps of tent map is established, and the sampling rule is proved to generate the independently and uniformly distributed key streams. One example is given to show that the established chaotic system does not converge into zero in each parameter due to its nonlinear characteristic. Another example with different initial values and lengths of sequence is illustrated, in which the chaotic key stream generated by the proposed theorem is independently and uniformly distributed chaotic system and can successfully satisfy the randomness requirements in Federal Information Processing Standard 140-2(FIPS PUB 140-2) and National Institute of Standards and Technology Special Publication 800-22 (NIST SP800-22) test. The result in this paper can provide the theoretical foundation and more selections of systems to generate independently and uniformly distributed chaotic key stream.
    • 基金项目: 国家自然科学基金(批准号: 60573058)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60573058).
    [1]

    Hu H P, Liu S H, Wang Z X, Wu X G 2004 Chin. J. Comput. 27 408 (in Chinese) [胡汉平, 刘双红, 王祖喜, 吴晓刚 2004计算机学报 27 408]

    [2]

    Xiang F, Qiu S S 2008 Acta Phys. Sin. 57 6132 (in Chinese) [向菲, 丘水生 2008 物理学报 57 6132]

    [3]

    Hao B L 1995 Starting with Parabola: An Introduction to Chaotic Dynamics (Shanghai: Shanghai Scientific and Technological Education Publishing House) pp12-15 (in Chinese) [郝柏林 1995 从抛物线谈起––混沌动力学引论(上海: 上海科技教育出版社) 第12–15页]

    [4]

    Alvarez G, Li S 2006 Int. J. Bifurcat. Chaos 16 2129

    [5]

    Lian S G, Sun J S, Wang J W, Wang Z Q 2007 Chaos, Solitons and Fractals 34 851

    [6]

    Phatak S, Rao S 1995 Phys. Rev. E 51 3670

    [7]

    Kanso A, Smaoui N 2009 Chaos, Solitons and Fractals 40 2557

    [8]

    Kocarev L, Jakimoski G 2003 IEEE Trans. CAS-I 50 123

    [9]

    Li J B, Zeng Y C, Chen S B, Chen J S 2011 Acta Phys. Sin. 60 060508 (in Chinese) [ 李家标, 曾以成, 陈仕必, 陈家胜2011 物理学报 60 060508]

    [10]

    Sun F Y, L Z W 2011 Acta Phys. Sin. 60 040503 (in Chinese) [孙福艳, 吕宗旺2011 物理学报 60 040503]

    [11]

    Luo S J, Qiu S S, Luo K Q 2003 Acta Phys. Sin. 52 1871 (in Chinese) [罗松江, 丘水生, 骆开庆 2003 物理学报 52 1871]

    [12]

    Luca A, Vlad A 2005 In Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS 2005) Iasi, Romania, July 14-15, 2005 p227

    [13]

    Luca A, Vlad A, Badea B, Frunzete M 2009 In Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS 2009) Iasi, Romania, July 9-10, 2009 p1

    [14]

    Luca A, Ilyas A, Vlad A 2011 In Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS 2011) Bucharest, Romania, June 30-July 1, 2001 p1

    [15]

    Liu X B, Zhao D A, Zhu Z Y 2006 J. Jiangsu Univ. Sci. Technol. (Natural Science Edition) 20 4 (in Chinese) [刘新波, 赵德安, 朱志宇2006 江苏科技大学学报(自然科学版) 20 4]

    [16]

    Pincus S M 1991 In Proc. of the National Academy of Sciences of the United States of America 88 2297

  • [1]

    Hu H P, Liu S H, Wang Z X, Wu X G 2004 Chin. J. Comput. 27 408 (in Chinese) [胡汉平, 刘双红, 王祖喜, 吴晓刚 2004计算机学报 27 408]

    [2]

    Xiang F, Qiu S S 2008 Acta Phys. Sin. 57 6132 (in Chinese) [向菲, 丘水生 2008 物理学报 57 6132]

    [3]

    Hao B L 1995 Starting with Parabola: An Introduction to Chaotic Dynamics (Shanghai: Shanghai Scientific and Technological Education Publishing House) pp12-15 (in Chinese) [郝柏林 1995 从抛物线谈起––混沌动力学引论(上海: 上海科技教育出版社) 第12–15页]

    [4]

    Alvarez G, Li S 2006 Int. J. Bifurcat. Chaos 16 2129

    [5]

    Lian S G, Sun J S, Wang J W, Wang Z Q 2007 Chaos, Solitons and Fractals 34 851

    [6]

    Phatak S, Rao S 1995 Phys. Rev. E 51 3670

    [7]

    Kanso A, Smaoui N 2009 Chaos, Solitons and Fractals 40 2557

    [8]

    Kocarev L, Jakimoski G 2003 IEEE Trans. CAS-I 50 123

    [9]

    Li J B, Zeng Y C, Chen S B, Chen J S 2011 Acta Phys. Sin. 60 060508 (in Chinese) [ 李家标, 曾以成, 陈仕必, 陈家胜2011 物理学报 60 060508]

    [10]

    Sun F Y, L Z W 2011 Acta Phys. Sin. 60 040503 (in Chinese) [孙福艳, 吕宗旺2011 物理学报 60 040503]

    [11]

    Luo S J, Qiu S S, Luo K Q 2003 Acta Phys. Sin. 52 1871 (in Chinese) [罗松江, 丘水生, 骆开庆 2003 物理学报 52 1871]

    [12]

    Luca A, Vlad A 2005 In Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS 2005) Iasi, Romania, July 14-15, 2005 p227

    [13]

    Luca A, Vlad A, Badea B, Frunzete M 2009 In Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS 2009) Iasi, Romania, July 9-10, 2009 p1

    [14]

    Luca A, Ilyas A, Vlad A 2011 In Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS 2011) Bucharest, Romania, June 30-July 1, 2001 p1

    [15]

    Liu X B, Zhao D A, Zhu Z Y 2006 J. Jiangsu Univ. Sci. Technol. (Natural Science Edition) 20 4 (in Chinese) [刘新波, 赵德安, 朱志宇2006 江苏科技大学学报(自然科学版) 20 4]

    [16]

    Pincus S M 1991 In Proc. of the National Academy of Sciences of the United States of America 88 2297

  • [1] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究. 物理学报, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [2] 曹小群. 基于高斯伪谱方法的混沌系统最优控制. 物理学报, 2013, 62(23): 230505. doi: 10.7498/aps.62.230505
    [3] 林剑, 许力. 基于混合生物地理优化的混沌系统参数估计. 物理学报, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [4] 杨锦辉, 宋君强. 混沌系统平均初始误差增长饱和特性研究. 物理学报, 2012, 61(17): 170511. doi: 10.7498/aps.61.170511
    [5] 李春来, 禹思敏, 罗晓曙. 一个新的混沌系统的构建与实现. 物理学报, 2012, 61(11): 110502. doi: 10.7498/aps.61.110502
    [6] 周小勇. 一个新混沌系统及其电路仿真. 物理学报, 2012, 61(3): 030504. doi: 10.7498/aps.61.030504
    [7] 曹小群, 宋君强, 张卫民, 赵军, 张理论. 基于变分方法的混沌系统参数估计. 物理学报, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [8] 冯朝文, 蔡理, 康强, 张立森. 一种新的三维自治混沌系统. 物理学报, 2011, 60(3): 030503. doi: 10.7498/aps.60.030503
    [9] 武花干, 包伯成, 刘中. 吸引子涡卷数量与分布的控制:系统设计及电路实现. 物理学报, 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [10] 张雪锋, 范九伦. 一种新的分段非线性混沌映射及其性能分析. 物理学报, 2010, 59(4): 2298-2304. doi: 10.7498/aps.59.2298
    [11] 赵文礼, 夏炜, 刘鹏, 王林泽. 基于混沌理论的微弱信号放大原理与方法研究. 物理学报, 2010, 59(5): 2962-2970. doi: 10.7498/aps.59.2962
    [12] 唐良瑞, 李静, 樊冰, 翟明岳. 新三维混沌系统及其电路仿真. 物理学报, 2009, 58(2): 785-793. doi: 10.7498/aps.58.785
    [13] 李文林, 宋运忠. 不确定非线性系统混沌反控制. 物理学报, 2008, 57(1): 51-55. doi: 10.7498/aps.57.51
    [14] 张建雄, 唐万生, 徐 勇. 一个新的三维混沌系统. 物理学报, 2008, 57(11): 6799-6807. doi: 10.7498/aps.57.6799
    [15] 邵仕泉, 高 心, 刘兴文. 两个耦合的分数阶Chen系统的混沌投影同步控制. 物理学报, 2007, 56(12): 6815-6819. doi: 10.7498/aps.56.6815
    [16] 杨东升, 张化光, 李爱平, 孟子怡. 基于模糊模型的不同结构的混沌系统同步. 物理学报, 2007, 56(6): 3121-3126. doi: 10.7498/aps.56.3121
    [17] 罗润梓. 一个新混沌系统的脉冲控制与同步. 物理学报, 2007, 56(10): 5655-5660. doi: 10.7498/aps.56.5655
    [18] 高 飞, 童恒庆. 基于改进粒子群优化算法的混沌系统参数估计方法. 物理学报, 2006, 55(2): 577-582. doi: 10.7498/aps.55.577
    [19] 王杰智, 陈增强, 袁著祉. 一个新的混沌系统及其性质研究. 物理学报, 2006, 55(8): 3956-3963. doi: 10.7498/aps.55.3956
    [20] 卢志刚, 于灵慧, 柳晓菁, 高美静, 吴士昌. 克服扰动的混沌逆控制同步系统. 物理学报, 2002, 51(10): 2211-2215. doi: 10.7498/aps.51.2211
计量
  • 文章访问数:  5865
  • PDF下载量:  718
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-13
  • 修回日期:  2013-02-16
  • 刊出日期:  2013-06-05

/

返回文章
返回