搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

{Cu3}单分子磁体在磁场中的热纠缠

李纪强 成志 周斌

引用本文:
Citation:

{Cu3}单分子磁体在磁场中的热纠缠

李纪强, 成志, 周斌

Thermal entanglement in a {Cu3} single molecular magnet in the magnetic field

Li Ji-Qiang, Cheng Zhi, Zhou Bin
PDF
导出引用
  • 本文研究单分子磁体Na9[Cu3Na3(H2O)9 (α-AsW9O33)2]·26H2O中三角自旋 环在磁场作用下的热纠缠性质, 利用数值计算求出任意两个Cu2+离子量子比特之间的配对纠缠度, 分别记为C12, C23和C13. 研究结果表明, 磁场的方向和大小以及温度对配对纠缠度具有重要影响, 而且参数的变化对C12, C23和C13的影响也是各不相同. 给出外加三个不同方向的磁场时, 配对纠缠度C12, C23和C13各自对应的临界温度Tc随磁场强度的变化图, 由此可以得到单分子磁体三角自旋环中存在纠缠态的参数范围. 通过选择适当的磁场方向和大小以及温度等实验参数, 可以有效地调节和提高单分子磁体中的配对纠缠度.
    We have investigated the properties of thermal entanglement in a triangular spin ring of the single molecular magnet (SMM) Na9[Cu3Na3(H2O)9 (α-AsW9O33)2]·26H2O in a magnetic field, and the pairwise concurrences of arbitrary two Cu2+ ion qubits are calculated numerically, hereafter abbreviated as C12, C23 and C13, respectively. Results show that the magnitude and direction of magnetic field as well as temperature have important effects on the pairwise thermal entanglement. Moreover, C12, C23 and C13 have difference variations with the change of the parameters. We also plot the changes of the critical temperatures Tc of C12, C23 and C13 with the magnetic fields along three different directions, and from the critical temperature-magnetic field phase diagrams one can obtain the ranges of parameters in which the pairwise thermal entanglement in a triangular spin ring of the SMM exists. Therefore, the pairwise entanglement can be controlled and enhanced in the SMM by choosing appropriate magnitude and direction of magnetic field and temperature.
    • 基金项目: 国家自然科学基金(批准号:11274102)和教育部新世纪优秀人才支持计划(批准号:NCET-11-0960)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960).
    [1]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [2]

    Wang X G 2001 Phys. Rev. A 64 012313

    [3]

    Wang X G 2001 Phys. Lett. A 281 101

    [4]

    Wang X G 2002 Phys. Rev. A 66 034302

    [5]

    Zhang G F, Li S S 2005 Phys. Rev. A 72 034302

    [6]

    Sun Y, Chen Y, Chen H 2003 Phys. Rev. A 68 044301

    [7]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张英丽, 周斌 2011 物理学报 60 120301]

    [8]

    Xi X Q, Chen W X, Liu Q, Yue R H 2006 Acta Phys. Sin. 55 3026 (in Chinese) [惠小强, 陈文学, 刘起, 岳瑞宏 2006 物理学报 55 3026]

    [9]

    Cao M, Zhu S Q 2005 Phys. Rev. A 71 034311

    [10]

    Wu K D, Zhou B, Cao W Q 2007 Phys. Lett. A 362 381

    [11]

    Cao M, Zhu S Q 2006 Chin. Phys. Lett. 23 2888

    [12]

    Li D C, Wang X P, Cao Z L 2008 J. Phys.: Condens. Matter 20 325229

    [13]

    Pan H Z, Kuang L M 2004 Chin. Phys. Lett. 21 424

    [14]

    Xi X Q, Chen W X, Yue R H 2002 Chin. Phys. Lett. 19 1044

    [15]

    Lu P, Wang J S 2009 Acta Phys. Sin. 58 5955 (in Chinese) [卢鹏, 王顺金 2009 物理学报 58 5955]

    [16]

    Ren J Z, Shao X Q, Zhang S, Yeon K H 2010 Chin. Phys. B 19 100307

    [17]

    Zhou L, Song H S, Guo Y Q, Li C 2003 Phys. Rev. A 68 024301

    [18]

    Zhang T, Xi X Q, Yue R H 2004 Acta Phys. Sin. 53 2755 (in Chinese) [张涛, 惠小强, 岳瑞宏 2004 物理学报 53 2755]

    [19]

    Wang Y H, Xia Y J 2009 Acta Phys. Sin. 58 7479 (in Chinese) [王彦辉, 夏云杰 2009 物理学报 58 7479]

    [20]

    Hu Z N, Yi K S, Park K S 2007 J. Phys. A: Math. Theor. 40 7283

    [21]

    Luczak J, Bulka B R 2012 J. Phys.: Condens. Matter 24 375303

    [22]

    Zhou B 2011 Int. J. Mod. Phys. B 25 2135

    [23]

    Hou J M, Du L, Ding J Y, Zhang W X 2010 Chin. Phys. B 19 110313

    [24]

    Qin M, Tian D P, Tao Y J 2008 Acta Phys. Sin. 57 5395 (in Chinese) [秦猛, 田东平, 陶应娟 2008 物理学报 57 5395]

    [25]

    Zheng Q, Zhang X P, Zhi Q J, Ren Z Z 2009 Chin. Phys. B 18 3210

    [26]

    Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B 1996 Nature 383 145

    [27]

    Wernsdorfer W, Sessoli R 1999 Science 284 133

    [28]

    Kortz U, Nellutla S, Stowe A C, Dalal N S, Rauwald U, Danquah W, Ravot D 2004 Inorg. Chem. 43 2308

    [29]

    Stowe A C, Nellutla S, Dalal N S, Kortz U 2004 Eur. J. Inorg. Chem. 19 3792

    [30]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [31]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [32]

    Leuenberger M N, Loss D 2001 Nature 410 789

    [33]

    Zhou B, Tao R B, Shen S Q, Liang J Q 2002 Phys. Rev. A 66 010301

    [34]

    Meier F, Levy J, Loss D 2003 Phys. Rev. B 68 134417

    [35]

    Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G, Winpenny R E P 2005 Phys. Rev. Lett. 94 207208

    [36]

    Lehmann J, Gaita-Ariño A, Coronado E, Loss D 2007 Nature Nanotech. 2 312

    [37]

    Trif M, Troiani F, Stepanenko D, Loss D 2008 Phys. Rev. Lett. 101 217201

    [38]

    Kortz U, Al-Kassem N K, Savelieff M G, Kadi N A A, Sadakane M 2001 Inorg. Chem. 40 4742

    [39]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [40]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [41]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

  • [1]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [2]

    Wang X G 2001 Phys. Rev. A 64 012313

    [3]

    Wang X G 2001 Phys. Lett. A 281 101

    [4]

    Wang X G 2002 Phys. Rev. A 66 034302

    [5]

    Zhang G F, Li S S 2005 Phys. Rev. A 72 034302

    [6]

    Sun Y, Chen Y, Chen H 2003 Phys. Rev. A 68 044301

    [7]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张英丽, 周斌 2011 物理学报 60 120301]

    [8]

    Xi X Q, Chen W X, Liu Q, Yue R H 2006 Acta Phys. Sin. 55 3026 (in Chinese) [惠小强, 陈文学, 刘起, 岳瑞宏 2006 物理学报 55 3026]

    [9]

    Cao M, Zhu S Q 2005 Phys. Rev. A 71 034311

    [10]

    Wu K D, Zhou B, Cao W Q 2007 Phys. Lett. A 362 381

    [11]

    Cao M, Zhu S Q 2006 Chin. Phys. Lett. 23 2888

    [12]

    Li D C, Wang X P, Cao Z L 2008 J. Phys.: Condens. Matter 20 325229

    [13]

    Pan H Z, Kuang L M 2004 Chin. Phys. Lett. 21 424

    [14]

    Xi X Q, Chen W X, Yue R H 2002 Chin. Phys. Lett. 19 1044

    [15]

    Lu P, Wang J S 2009 Acta Phys. Sin. 58 5955 (in Chinese) [卢鹏, 王顺金 2009 物理学报 58 5955]

    [16]

    Ren J Z, Shao X Q, Zhang S, Yeon K H 2010 Chin. Phys. B 19 100307

    [17]

    Zhou L, Song H S, Guo Y Q, Li C 2003 Phys. Rev. A 68 024301

    [18]

    Zhang T, Xi X Q, Yue R H 2004 Acta Phys. Sin. 53 2755 (in Chinese) [张涛, 惠小强, 岳瑞宏 2004 物理学报 53 2755]

    [19]

    Wang Y H, Xia Y J 2009 Acta Phys. Sin. 58 7479 (in Chinese) [王彦辉, 夏云杰 2009 物理学报 58 7479]

    [20]

    Hu Z N, Yi K S, Park K S 2007 J. Phys. A: Math. Theor. 40 7283

    [21]

    Luczak J, Bulka B R 2012 J. Phys.: Condens. Matter 24 375303

    [22]

    Zhou B 2011 Int. J. Mod. Phys. B 25 2135

    [23]

    Hou J M, Du L, Ding J Y, Zhang W X 2010 Chin. Phys. B 19 110313

    [24]

    Qin M, Tian D P, Tao Y J 2008 Acta Phys. Sin. 57 5395 (in Chinese) [秦猛, 田东平, 陶应娟 2008 物理学报 57 5395]

    [25]

    Zheng Q, Zhang X P, Zhi Q J, Ren Z Z 2009 Chin. Phys. B 18 3210

    [26]

    Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B 1996 Nature 383 145

    [27]

    Wernsdorfer W, Sessoli R 1999 Science 284 133

    [28]

    Kortz U, Nellutla S, Stowe A C, Dalal N S, Rauwald U, Danquah W, Ravot D 2004 Inorg. Chem. 43 2308

    [29]

    Stowe A C, Nellutla S, Dalal N S, Kortz U 2004 Eur. J. Inorg. Chem. 19 3792

    [30]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [31]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [32]

    Leuenberger M N, Loss D 2001 Nature 410 789

    [33]

    Zhou B, Tao R B, Shen S Q, Liang J Q 2002 Phys. Rev. A 66 010301

    [34]

    Meier F, Levy J, Loss D 2003 Phys. Rev. B 68 134417

    [35]

    Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G, Winpenny R E P 2005 Phys. Rev. Lett. 94 207208

    [36]

    Lehmann J, Gaita-Ariño A, Coronado E, Loss D 2007 Nature Nanotech. 2 312

    [37]

    Trif M, Troiani F, Stepanenko D, Loss D 2008 Phys. Rev. Lett. 101 217201

    [38]

    Kortz U, Al-Kassem N K, Savelieff M G, Kadi N A A, Sadakane M 2001 Inorg. Chem. 40 4742

    [39]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [40]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [41]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

  • [1] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变. 物理学报, 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [2] 强进, 何开宙, 刘东妮, 卢启海, 韩根亮, 宋玉哲, 王向谦. 三角形结构中磁涡旋自旋波模式的研究. 物理学报, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [3] 李建新. 自旋涨落与非常规超导配对. 物理学报, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [4] 孟淼, 严德贤, 李九生, 孙帅. 基于嵌套三角形包层结构负曲率太赫兹光纤的研究. 物理学报, 2020, 69(16): 167801. doi: 10.7498/aps.69.20200457
    [5] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [6] 郑一丹, 毛竹, 周斌. 具有三角自旋环的伊辛-海森伯链的热纠缠. 物理学报, 2017, 66(23): 230304. doi: 10.7498/aps.66.230304
    [7] 郑一丹, 周斌. {Cu3}单分子磁体在热平衡和磁场作用下的三体纠缠. 物理学报, 2016, 65(12): 120301. doi: 10.7498/aps.65.120301
    [8] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [9] 王鲁顺, 江慧, 孔祥木. 混合自旋XY系统热纠缠的研究. 物理学报, 2012, 61(24): 240304. doi: 10.7498/aps.61.240304
    [10] 李文强, 曹祥玉, 高军, 刘涛, 姚旭, 马嘉俊. 基于斜三角开口对环的宽带低耗左手材料. 物理学报, 2012, 61(15): 154102. doi: 10.7498/aps.61.154102
    [11] 张英丽, 周斌. 具有Dzyaloshinskii-Moriya相互作用的四量子比特海森堡XXZ模型中的热纠缠. 物理学报, 2011, 60(12): 120301. doi: 10.7498/aps.60.120301
    [12] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [13] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [14] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [15] 张淳民, 孙明昭, 袁志林, 宋晓平. 基于三角谐振环的新型六边形谐振环金属线复合周期结构左手材料性质研究. 物理学报, 2009, 58(3): 1758-1764. doi: 10.7498/aps.58.1758
    [16] 秦 猛, 田东平, 陶应娟. 自旋为1的三粒子Heisenberg XXX链中杂质对热纠缠的影响. 物理学报, 2008, 57(9): 5395-5399. doi: 10.7498/aps.57.5395
    [17] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [18] 贺 锋, 郭启波, 刘 辽. 用三角函数法获得非线性Boussinesq方程的广义孤子解. 物理学报, 2007, 56(8): 4326-4330. doi: 10.7498/aps.56.4326
    [19] 刘 斌, 梁 颖, 冯世平. 掺杂各向异性三角晶格系统的自旋动力学. 物理学报, 2004, 53(10): 3540-3544. doi: 10.7498/aps.53.3540
    [20] 邵懋良, 马腾才. 三角变形椭圆截面环电流器的平衡理论和绝热压缩理论. 物理学报, 1981, 30(4): 487-496. doi: 10.7498/aps.30.487
计量
  • 文章访问数:  6448
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-10
  • 修回日期:  2013-08-07
  • 刊出日期:  2013-10-05

/

返回文章
返回