-
移动Ad-Hoc网络容量的稳定性是保证其服务质量的关键性质之一. 本文提出一种新颖的考虑时变传播时延的非合作规划博弈移动Ad-Hoc网络容量分析模型稳定性控制技术. 首先求得加入时变传播时延项的非合作规划博弈移动Ad-Hoc网络容量分析模型的源节点发送流量速率演化方程组——一类非线性时变时滞微分方程组,在此基础上采用描述器技术结合线性矩阵不等式技术得到该模型的渐进稳定性准则,并设计了模型稳定性控制的迭代算法. 由于是基于等价模型变换,所提出的渐近稳定性判别准则具有较小的保守性. 仿真实验验证了本算法的有效性. 本建模与分析方法虽以具体的非合作规划博弈移动Ad-Hoc网络容量分析模型为例,但其可以应用于一般的移动Ad-Hoc网络容量稳定性控制问题.Stability of capacity is one of the key properties for quality of service (QoS) support in mobile ad hoc networks (MANETs). In this paper, a novel technique is proposed for controlling the stability of capacity analysis model for non-cooperative program game MANETs, with the time-varying propagation delay taken into consideration. First, based on the obtained source node flow transmitting rate evolution aligns of capacity analysis model for non-cooperative program game mobile ad-hoc network, when adding the time-varying propagation delay term, which is a class of nonlinear time-varying delay differential aligns, the asymptotic stability criteria of the model are presented in the form of descriptor and linear matrix inequalities. Then, an iterative algorithm is also provided for controlling the stability of the model. The proposed criteria are less conservative since they are based on an equivalent model transformation. Simulation experiments verify the effectiveness of this algorithm. Although the model used in this paper focuses on a specific algorithm, we believe that this method has a great potential in analyzing and understanding the general capacity of MANETs stability control issues.
-
Keywords:
- non-cooperative program game /
- time-varying propagation delay /
- descriptor /
- linear matrix inequalities
[1] Gupta P, Kumar P 2000 IEEE Trans. Inform. Theory 46 388
[2] Grossglauser M, Tse D N C 2002 IEEE/ACM Trans. Networ. 10 477
[3] Zhao S M, Liu J 2010 Acta Phys. Sin. 59 771 (in Chinese) [赵生妹, 刘静 2010 物理学报 59 771]
[4] Shirong D, John N D, Bahram A 2011 Ad-Hoc Net. 9 120
[5] Zhao H T, Emiliano G P, Jibo W, Yong X 2011 Phys. Comun. 4 98
[6] Zhong L, Wang C, Jiang C J, Li X Y 2013 Ad-Hoc Net. 11 29
[7] Wang L J, Cai L, Liu X Z 2009 Comput. Net. 53 338
[8] Tassiulas L 1997 IEEE Trans. Inform. Theory 43 106
[9] Li W X, Su H, Wang K 2011 Automatica 47 215
[10] Feijer D, Paganini F 2010 Automatica. 46 1974
[11] Dargie W, Schill A 2011 J. Comput. Syst. Sci. 77 852
[12] Chen C H, Yin C C, Yue G X 2011 J. China Universities of Posts and Telecommunications 18 22
[13] Jae Y S, Seong L K 2012 Comput. Commun. 35 1345
[14] Kherani A, El-Khoury R, El-Azouzi R 2008 Comput. Net. 52 1365
[15] Liu S, Liu B, Zhang Y K, Wen Y 2010 Acta Phys. Sin. 59 38 (in Chinese) [刘爽, 刘彬, 张业宽, 闻岩 2010 物理学报 59 38]
[16] Shi P M, Li J Z, Liu B, Han D Y 2011 Acta Phys. Sin. 60 94501 (in Chinese) [时培明, 李纪召, 刘彬, 韩东颖 2011 物理学报 60 094501]
[17] Shi P M, Liu B, Hou D X 2008 Acta Phys. Sin. 57 1321 (in Chinese) [时培明, 刘彬, 侯东晓 2008 物理学报 57 1321]
[18] Kherani A, El-Khoury R, El-Azouzi R 2008 Comput. Networks. 52 1365
[19] Yamamoto K, 2005 IEICE T. Commun. E88-B 1009
[20] Farhadi A, 2010 Charalambousb D: Automatica 46 889
[21] Yang J, Li Y, Zhang Z J, Li J Q 2012 JEIT 34 75 (in Chinese) [杨娟, 李颖, 张志军, 李季青 2012 电子与信息学报 34 75]
[22] Li C D, Liao X F 2006 Int. J. Bifurcat. Chaos 16 3323
[23] Liao X F, Li C D 2007 Int. J. Bifurcat. Chaos 18 342
[24] Arik S 2002 IEEE Trans. Neural Networks 13 1239
[25] Cao J D 2001 IEEE Trans. CAS I 48 1330
[26] Hale J, Verduyn Lunel SM 1993 Introduction to Functional Differential Aligns (New York: Springer) p332
[27] Kolmanovskii V, Nosov V 1986 Stability of Functional Differential Aligns (New York: Academic Press) p214
[28] Zhang H G, Wang Z L, Wang Z S 2006 Acta Phys. Sin. 55 2687 (in Chinese) [张化光, 王智良, 王占山 2006 物理学报 55 2687]
[29] Gopalsamy K 1992 Ph. D. Dissertation (The Netherlands: Kluwer Academic)
[30] Liao X F, Liu Y B, Guo S T, Huanhuan M 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3120
[31] Fridman E 2001 Syst. Control Lett. 43 309
[32] Yang J 2011 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [杨娟 2011博士学位论文 (重庆: 重庆大学)]
[33] Liao X X 2002 Theory Methods and Application of Stability (Wuhan: Press of Huazhong University of Science and Technology) p40 (in Chinese) [廖晓昕 2002 稳定性的理论、方法和应用 (武汉: 华中科技大学 出版社) 第40页]
[34] Kolamnovskii V, Myshkis A 1999 Applied Theory of Functional Differential Aligns (Boston (MA): Kluwer) p59
[35] Alpcan T, Basar T 2005 IEEE/ACM Trans. Networ. 13 1261
[36] Wu M, He Y 2008 Delay System Robust Control-Liberty Matrix Method (Beijing: Science Press) p1 (in Chinese) [吴敏, 何勇 2008 时滞系统鲁棒控制——自由权矩阵方法 (北京: 科学出版社) 第1页]
-
[1] Gupta P, Kumar P 2000 IEEE Trans. Inform. Theory 46 388
[2] Grossglauser M, Tse D N C 2002 IEEE/ACM Trans. Networ. 10 477
[3] Zhao S M, Liu J 2010 Acta Phys. Sin. 59 771 (in Chinese) [赵生妹, 刘静 2010 物理学报 59 771]
[4] Shirong D, John N D, Bahram A 2011 Ad-Hoc Net. 9 120
[5] Zhao H T, Emiliano G P, Jibo W, Yong X 2011 Phys. Comun. 4 98
[6] Zhong L, Wang C, Jiang C J, Li X Y 2013 Ad-Hoc Net. 11 29
[7] Wang L J, Cai L, Liu X Z 2009 Comput. Net. 53 338
[8] Tassiulas L 1997 IEEE Trans. Inform. Theory 43 106
[9] Li W X, Su H, Wang K 2011 Automatica 47 215
[10] Feijer D, Paganini F 2010 Automatica. 46 1974
[11] Dargie W, Schill A 2011 J. Comput. Syst. Sci. 77 852
[12] Chen C H, Yin C C, Yue G X 2011 J. China Universities of Posts and Telecommunications 18 22
[13] Jae Y S, Seong L K 2012 Comput. Commun. 35 1345
[14] Kherani A, El-Khoury R, El-Azouzi R 2008 Comput. Net. 52 1365
[15] Liu S, Liu B, Zhang Y K, Wen Y 2010 Acta Phys. Sin. 59 38 (in Chinese) [刘爽, 刘彬, 张业宽, 闻岩 2010 物理学报 59 38]
[16] Shi P M, Li J Z, Liu B, Han D Y 2011 Acta Phys. Sin. 60 94501 (in Chinese) [时培明, 李纪召, 刘彬, 韩东颖 2011 物理学报 60 094501]
[17] Shi P M, Liu B, Hou D X 2008 Acta Phys. Sin. 57 1321 (in Chinese) [时培明, 刘彬, 侯东晓 2008 物理学报 57 1321]
[18] Kherani A, El-Khoury R, El-Azouzi R 2008 Comput. Networks. 52 1365
[19] Yamamoto K, 2005 IEICE T. Commun. E88-B 1009
[20] Farhadi A, 2010 Charalambousb D: Automatica 46 889
[21] Yang J, Li Y, Zhang Z J, Li J Q 2012 JEIT 34 75 (in Chinese) [杨娟, 李颖, 张志军, 李季青 2012 电子与信息学报 34 75]
[22] Li C D, Liao X F 2006 Int. J. Bifurcat. Chaos 16 3323
[23] Liao X F, Li C D 2007 Int. J. Bifurcat. Chaos 18 342
[24] Arik S 2002 IEEE Trans. Neural Networks 13 1239
[25] Cao J D 2001 IEEE Trans. CAS I 48 1330
[26] Hale J, Verduyn Lunel SM 1993 Introduction to Functional Differential Aligns (New York: Springer) p332
[27] Kolmanovskii V, Nosov V 1986 Stability of Functional Differential Aligns (New York: Academic Press) p214
[28] Zhang H G, Wang Z L, Wang Z S 2006 Acta Phys. Sin. 55 2687 (in Chinese) [张化光, 王智良, 王占山 2006 物理学报 55 2687]
[29] Gopalsamy K 1992 Ph. D. Dissertation (The Netherlands: Kluwer Academic)
[30] Liao X F, Liu Y B, Guo S T, Huanhuan M 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3120
[31] Fridman E 2001 Syst. Control Lett. 43 309
[32] Yang J 2011 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [杨娟 2011博士学位论文 (重庆: 重庆大学)]
[33] Liao X X 2002 Theory Methods and Application of Stability (Wuhan: Press of Huazhong University of Science and Technology) p40 (in Chinese) [廖晓昕 2002 稳定性的理论、方法和应用 (武汉: 华中科技大学 出版社) 第40页]
[34] Kolamnovskii V, Myshkis A 1999 Applied Theory of Functional Differential Aligns (Boston (MA): Kluwer) p59
[35] Alpcan T, Basar T 2005 IEEE/ACM Trans. Networ. 13 1261
[36] Wu M, He Y 2008 Delay System Robust Control-Liberty Matrix Method (Beijing: Science Press) p1 (in Chinese) [吴敏, 何勇 2008 时滞系统鲁棒控制——自由权矩阵方法 (北京: 科学出版社) 第1页]
计量
- 文章访问数: 6012
- PDF下载量: 541
- 被引次数: 0