搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变时延移动Ad-Hoc网络容量非合作规划博弈模型的渐近稳定性

杨娟 杨丹 黄彬 张小洪 杨聪

引用本文:
Citation:

变时延移动Ad-Hoc网络容量非合作规划博弈模型的渐近稳定性

杨娟, 杨丹, 黄彬, 张小洪, 杨聪

Asymptotic stability for non-cooperative program game model of the capacity analysis for mobile ad-hoc networks with variable time delay

Yang Juan, Yang Dan, Huang Bin, Zhang Xiao-Hong, Yang Cong
PDF
导出引用
  • 移动Ad-Hoc网络容量的稳定性是保证其服务质量的关键性质之一. 本文提出一种新颖的考虑时变传播时延的非合作规划博弈移动Ad-Hoc网络容量分析模型稳定性控制技术. 首先求得加入时变传播时延项的非合作规划博弈移动Ad-Hoc网络容量分析模型的源节点发送流量速率演化方程组——一类非线性时变时滞微分方程组,在此基础上采用描述器技术结合线性矩阵不等式技术得到该模型的渐进稳定性准则,并设计了模型稳定性控制的迭代算法. 由于是基于等价模型变换,所提出的渐近稳定性判别准则具有较小的保守性. 仿真实验验证了本算法的有效性. 本建模与分析方法虽以具体的非合作规划博弈移动Ad-Hoc网络容量分析模型为例,但其可以应用于一般的移动Ad-Hoc网络容量稳定性控制问题.
    Stability of capacity is one of the key properties for quality of service (QoS) support in mobile ad hoc networks (MANETs). In this paper, a novel technique is proposed for controlling the stability of capacity analysis model for non-cooperative program game MANETs, with the time-varying propagation delay taken into consideration. First, based on the obtained source node flow transmitting rate evolution aligns of capacity analysis model for non-cooperative program game mobile ad-hoc network, when adding the time-varying propagation delay term, which is a class of nonlinear time-varying delay differential aligns, the asymptotic stability criteria of the model are presented in the form of descriptor and linear matrix inequalities. Then, an iterative algorithm is also provided for controlling the stability of the model. The proposed criteria are less conservative since they are based on an equivalent model transformation. Simulation experiments verify the effectiveness of this algorithm. Although the model used in this paper focuses on a specific algorithm, we believe that this method has a great potential in analyzing and understanding the general capacity of MANETs stability control issues.
    • 基金项目: 国家自然科学基金(批准号:61173131)、中央高校基本科研业务费跨学科类重大项目(批准号:CDJZR12098801)、重庆市基础与前沿研究计划(批准号:cstc2013jcyjA40033)、重庆市重点攻关项目(批准号:CSTC2009AB2230)、重庆市攻关项目(批准号:2009AC2057)和重庆市博士后特别资助项目(批准号:XM20120054)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61173131), Central Universities Fundamental Research Interdisciplinary Class Major Projects, China (Grant No. CDJZR12098801), Based and Advanced Research Projects of Chongqing of China (Grant No. cstc2013jcyjA40033), Key Strategic Project of Chongqing of China (Grant No. CSTC2009AB2230), Strategeic Project of Chongqing of China (Grant No. 2009AC2057), and the Special funding for Scientific Research Project of Chongqing Postdoctoral Researchers, China (Grant No. XM20120054).
    [1]

    Gupta P, Kumar P 2000 IEEE Trans. Inform. Theory 46 388

    [2]

    Grossglauser M, Tse D N C 2002 IEEE/ACM Trans. Networ. 10 477

    [3]

    Zhao S M, Liu J 2010 Acta Phys. Sin. 59 771 (in Chinese) [赵生妹, 刘静 2010 物理学报 59 771]

    [4]

    Shirong D, John N D, Bahram A 2011 Ad-Hoc Net. 9 120

    [5]

    Zhao H T, Emiliano G P, Jibo W, Yong X 2011 Phys. Comun. 4 98

    [6]

    Zhong L, Wang C, Jiang C J, Li X Y 2013 Ad-Hoc Net. 11 29

    [7]

    Wang L J, Cai L, Liu X Z 2009 Comput. Net. 53 338

    [8]

    Tassiulas L 1997 IEEE Trans. Inform. Theory 43 106

    [9]

    Li W X, Su H, Wang K 2011 Automatica 47 215

    [10]

    Feijer D, Paganini F 2010 Automatica. 46 1974

    [11]

    Dargie W, Schill A 2011 J. Comput. Syst. Sci. 77 852

    [12]

    Chen C H, Yin C C, Yue G X 2011 J. China Universities of Posts and Telecommunications 18 22

    [13]

    Jae Y S, Seong L K 2012 Comput. Commun. 35 1345

    [14]

    Kherani A, El-Khoury R, El-Azouzi R 2008 Comput. Net. 52 1365

    [15]

    Liu S, Liu B, Zhang Y K, Wen Y 2010 Acta Phys. Sin. 59 38 (in Chinese) [刘爽, 刘彬, 张业宽, 闻岩 2010 物理学报 59 38]

    [16]

    Shi P M, Li J Z, Liu B, Han D Y 2011 Acta Phys. Sin. 60 94501 (in Chinese) [时培明, 李纪召, 刘彬, 韩东颖 2011 物理学报 60 094501]

    [17]

    Shi P M, Liu B, Hou D X 2008 Acta Phys. Sin. 57 1321 (in Chinese) [时培明, 刘彬, 侯东晓 2008 物理学报 57 1321]

    [18]

    Kherani A, El-Khoury R, El-Azouzi R 2008 Comput. Networks. 52 1365

    [19]

    Yamamoto K, 2005 IEICE T. Commun. E88-B 1009

    [20]

    Farhadi A, 2010 Charalambousb D: Automatica 46 889

    [21]

    Yang J, Li Y, Zhang Z J, Li J Q 2012 JEIT 34 75 (in Chinese) [杨娟, 李颖, 张志军, 李季青 2012 电子与信息学报 34 75]

    [22]

    Li C D, Liao X F 2006 Int. J. Bifurcat. Chaos 16 3323

    [23]

    Liao X F, Li C D 2007 Int. J. Bifurcat. Chaos 18 342

    [24]

    Arik S 2002 IEEE Trans. Neural Networks 13 1239

    [25]

    Cao J D 2001 IEEE Trans. CAS I 48 1330

    [26]

    Hale J, Verduyn Lunel SM 1993 Introduction to Functional Differential Aligns (New York: Springer) p332

    [27]

    Kolmanovskii V, Nosov V 1986 Stability of Functional Differential Aligns (New York: Academic Press) p214

    [28]

    Zhang H G, Wang Z L, Wang Z S 2006 Acta Phys. Sin. 55 2687 (in Chinese) [张化光, 王智良, 王占山 2006 物理学报 55 2687]

    [29]

    Gopalsamy K 1992 Ph. D. Dissertation (The Netherlands: Kluwer Academic)

    [30]

    Liao X F, Liu Y B, Guo S T, Huanhuan M 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3120

    [31]

    Fridman E 2001 Syst. Control Lett. 43 309

    [32]

    Yang J 2011 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [杨娟 2011博士学位论文 (重庆: 重庆大学)]

    [33]

    Liao X X 2002 Theory Methods and Application of Stability (Wuhan: Press of Huazhong University of Science and Technology) p40 (in Chinese) [廖晓昕 2002 稳定性的理论、方法和应用 (武汉: 华中科技大学 出版社) 第40页]

    [34]

    Kolamnovskii V, Myshkis A 1999 Applied Theory of Functional Differential Aligns (Boston (MA): Kluwer) p59

    [35]

    Alpcan T, Basar T 2005 IEEE/ACM Trans. Networ. 13 1261

    [36]

    Wu M, He Y 2008 Delay System Robust Control-Liberty Matrix Method (Beijing: Science Press) p1 (in Chinese) [吴敏, 何勇 2008 时滞系统鲁棒控制——自由权矩阵方法 (北京: 科学出版社) 第1页]

  • [1]

    Gupta P, Kumar P 2000 IEEE Trans. Inform. Theory 46 388

    [2]

    Grossglauser M, Tse D N C 2002 IEEE/ACM Trans. Networ. 10 477

    [3]

    Zhao S M, Liu J 2010 Acta Phys. Sin. 59 771 (in Chinese) [赵生妹, 刘静 2010 物理学报 59 771]

    [4]

    Shirong D, John N D, Bahram A 2011 Ad-Hoc Net. 9 120

    [5]

    Zhao H T, Emiliano G P, Jibo W, Yong X 2011 Phys. Comun. 4 98

    [6]

    Zhong L, Wang C, Jiang C J, Li X Y 2013 Ad-Hoc Net. 11 29

    [7]

    Wang L J, Cai L, Liu X Z 2009 Comput. Net. 53 338

    [8]

    Tassiulas L 1997 IEEE Trans. Inform. Theory 43 106

    [9]

    Li W X, Su H, Wang K 2011 Automatica 47 215

    [10]

    Feijer D, Paganini F 2010 Automatica. 46 1974

    [11]

    Dargie W, Schill A 2011 J. Comput. Syst. Sci. 77 852

    [12]

    Chen C H, Yin C C, Yue G X 2011 J. China Universities of Posts and Telecommunications 18 22

    [13]

    Jae Y S, Seong L K 2012 Comput. Commun. 35 1345

    [14]

    Kherani A, El-Khoury R, El-Azouzi R 2008 Comput. Net. 52 1365

    [15]

    Liu S, Liu B, Zhang Y K, Wen Y 2010 Acta Phys. Sin. 59 38 (in Chinese) [刘爽, 刘彬, 张业宽, 闻岩 2010 物理学报 59 38]

    [16]

    Shi P M, Li J Z, Liu B, Han D Y 2011 Acta Phys. Sin. 60 94501 (in Chinese) [时培明, 李纪召, 刘彬, 韩东颖 2011 物理学报 60 094501]

    [17]

    Shi P M, Liu B, Hou D X 2008 Acta Phys. Sin. 57 1321 (in Chinese) [时培明, 刘彬, 侯东晓 2008 物理学报 57 1321]

    [18]

    Kherani A, El-Khoury R, El-Azouzi R 2008 Comput. Networks. 52 1365

    [19]

    Yamamoto K, 2005 IEICE T. Commun. E88-B 1009

    [20]

    Farhadi A, 2010 Charalambousb D: Automatica 46 889

    [21]

    Yang J, Li Y, Zhang Z J, Li J Q 2012 JEIT 34 75 (in Chinese) [杨娟, 李颖, 张志军, 李季青 2012 电子与信息学报 34 75]

    [22]

    Li C D, Liao X F 2006 Int. J. Bifurcat. Chaos 16 3323

    [23]

    Liao X F, Li C D 2007 Int. J. Bifurcat. Chaos 18 342

    [24]

    Arik S 2002 IEEE Trans. Neural Networks 13 1239

    [25]

    Cao J D 2001 IEEE Trans. CAS I 48 1330

    [26]

    Hale J, Verduyn Lunel SM 1993 Introduction to Functional Differential Aligns (New York: Springer) p332

    [27]

    Kolmanovskii V, Nosov V 1986 Stability of Functional Differential Aligns (New York: Academic Press) p214

    [28]

    Zhang H G, Wang Z L, Wang Z S 2006 Acta Phys. Sin. 55 2687 (in Chinese) [张化光, 王智良, 王占山 2006 物理学报 55 2687]

    [29]

    Gopalsamy K 1992 Ph. D. Dissertation (The Netherlands: Kluwer Academic)

    [30]

    Liao X F, Liu Y B, Guo S T, Huanhuan M 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 3120

    [31]

    Fridman E 2001 Syst. Control Lett. 43 309

    [32]

    Yang J 2011 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [杨娟 2011博士学位论文 (重庆: 重庆大学)]

    [33]

    Liao X X 2002 Theory Methods and Application of Stability (Wuhan: Press of Huazhong University of Science and Technology) p40 (in Chinese) [廖晓昕 2002 稳定性的理论、方法和应用 (武汉: 华中科技大学 出版社) 第40页]

    [34]

    Kolamnovskii V, Myshkis A 1999 Applied Theory of Functional Differential Aligns (Boston (MA): Kluwer) p59

    [35]

    Alpcan T, Basar T 2005 IEEE/ACM Trans. Networ. 13 1261

    [36]

    Wu M, He Y 2008 Delay System Robust Control-Liberty Matrix Method (Beijing: Science Press) p1 (in Chinese) [吴敏, 何勇 2008 时滞系统鲁棒控制——自由权矩阵方法 (北京: 科学出版社) 第1页]

  • [1] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强. 物理学报, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] 曾柏云, 辜鹏宇, 蒋世民, 贾欣燕, 樊代和. Markov环境下“X”态基于CHSH不等式的量子非局域关联检验. 物理学报, 2023, 72(5): 050301. doi: 10.7498/aps.72.20222218
    [3] 曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和. 基于CHSH不等式几何解释的“X”态量子非局域关联检验. 物理学报, 2022, 71(17): 170302. doi: 10.7498/aps.71.20220445
    [4] 王宇娟, 涂俐兰, 宋帅, 李宽洋. 耦合含时滞的相互依存网络的局部自适应异质同步. 物理学报, 2018, 67(5): 050504. doi: 10.7498/aps.67.20171927
    [5] 贾雅琼, 蒋国平. 基于状态观测器的分数阶时滞混沌系统同步研究. 物理学报, 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [6] 安宝冉, 刘国平. 基于时延补偿机理的网络化输出反馈控制器设计. 物理学报, 2014, 63(9): 090205. doi: 10.7498/aps.63.090205
    [7] 陈文波, 龚学余, 邓贤君, 冯军, 黄国玉. THz电磁波在时变非磁化等离子体中的传播特性研究. 物理学报, 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [8] 王斌, 薛建议, 贺好艳, 朱德兰. 基于线性矩阵不等式的一类新羽翼倍增混沌分析与控制. 物理学报, 2014, 63(21): 210502. doi: 10.7498/aps.63.210502
    [9] 李凯, 王安帮, 赵彤, 王云才. 光电振荡器产生宽带混沌光的时延特征分析. 物理学报, 2013, 62(14): 144207. doi: 10.7498/aps.62.144207
    [10] 赵加强, 曹连振, 逯怀新, 王晓芹. 三比特类GHZ态的Bell型不等式和非定域性. 物理学报, 2013, 62(12): 120301. doi: 10.7498/aps.62.120301
    [11] 涂俐兰, 刘红芳, 余乐. 噪声下时滞复杂网络的局部自适应H无穷一致性. 物理学报, 2013, 62(14): 140506. doi: 10.7498/aps.62.140506
    [12] 涂俐兰, 柯超, 丁咏梅. 随机扰动下一般混沌系统的H∞同步. 物理学报, 2011, 60(5): 056803. doi: 10.7498/aps.60.056803
    [13] 杨东升, 张化光, 赵琰, 宋崇辉, 王迎春. 基于LMI的参数未知时变时滞混沌系统模糊自适应H∞同步. 物理学报, 2010, 59(3): 1562-1567. doi: 10.7498/aps.59.1562
    [14] 张建雄, 唐万生, 徐 勇. 一个新的三维混沌系统. 物理学报, 2008, 57(11): 6799-6807. doi: 10.7498/aps.57.6799
    [15] 李秀春, 徐 伟, 肖玉柱. 基于积分观测器实现一类受扰混沌系统的同步. 物理学报, 2008, 57(3): 1465-1470. doi: 10.7498/aps.57.1465
    [16] 王占山, 张化光, 王智良. 一类混沌神经网络的全局同步. 物理学报, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [17] 窦春霞, 张淑清. 基于观测器的模型不确定的耦合时空混沌H∞跟踪控制. 物理学报, 2004, 53(12): 4120-4125. doi: 10.7498/aps.53.4120
    [18] 吴忠强, 岳东, 许世范. Chua混沌系统的一种模糊控制器设计——LMI法. 物理学报, 2002, 51(6): 1193-1197. doi: 10.7498/aps.51.1193
    [19] 张瑞华, 米辛, 周海天, 姜谦, 叶佩弦. 非相干光时延四波混频的多能级理论——非均匀加宽情形. 物理学报, 1991, 40(3): 414-423. doi: 10.7498/aps.40.414
    [20] 方守贤, 魏开煜. 等时性迥旋加速器中的不等时现象. 物理学报, 1962, 18(12): 670-682. doi: 10.7498/aps.18.670
计量
  • 文章访问数:  6012
  • PDF下载量:  541
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-12
  • 修回日期:  2013-10-28
  • 刊出日期:  2014-01-05

/

返回文章
返回