搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质加载复合光栅结构的色散特性研究

曹苗苗 刘文鑫 王勇 李科

引用本文:
Citation:

介质加载复合光栅结构的色散特性研究

曹苗苗, 刘文鑫, 王勇, 李科

Dispersion characteristics of dielectric loaded metal grating

Cao Miao-Miao, Liu Wen-Xin, Wang Yong, Li Ke
PDF
导出引用
  • 提出了一种用于Smith-Purcell器件的介质加载金属光栅周期慢波结构. 通过采用本征函数法和单模近似法求解了介质加载金属光栅的“热色”散方程,在同步点得到了注-波互作用的一阶和二阶增长率,分析了光栅槽宽和槽深对色散特性的影响,并研究了电子注参数及其与光栅表面距离等主要参数对增长率特性的影响. 结果表明:通过介质加载金属光栅有利于减弱色散,随着介质相对介电常数、槽宽度以及深度的增大,色散曲线变平缓且向低频区移动;当电子注参数变化时,一阶增长率曲线从整体上粗略地描述增长率变化趋势,二阶曲线则更精细地描述增长率相应值的变化. 利用软件MAGIC 对该结构的色散特性进行了二维模拟,模拟结果与理论计算值符合良好.
    A novel type of slow-wave structure for Smith-Purcell device called dielectric loaded metal grating, is proposed in this article. The “hot” dispersion align of the structure is obtained by using the eigen-function method and single-mode approximation. The first-and second-order growth rate of beam-wave interaction are obtained at the synchronization point. The effects of grating groove width and depth on dispersion characteristic are analyzed, and the influences of electron beam parameters and distance between electron beam and grating surface on growth rate characteristic are also studied. The results show that dielectric-loaded metal grating can effectively weaken the structure dispersion, and that with the increases of relative dielectric permittivity, groove width and depth, the dispersion curve becomes flatter and moves toward low frequency. When the electron beam voltage or current changes, the first-order growth rate curve can only roughly describe the change trend, while the second-order growth rate can accurately show the change values. The simulation of the structure is performed by using two-dimensional particle-in-cell code MAGIC, and the simulation results accord well with the theoretical results.
    • 基金项目: 国家自然科学基金(批准号:10905032,11275004)、国家高技术研究发展计划(批准号:2012AA8122007A)和中国科学院知识创新工程重要方向性项目(批准号:YYYJ-11235)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10905032, 11275004), the National High Technology Research and Development Program of China (Grant No. 2012AA8122007A), and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. YYYJ-11235).
    [1]

    Smith S J, Purcell E M 1953 Phys. Rev. 92 4

    [2]

    Marshall E M, Phillips P M, Walsh J E 1988 IEEE Trans. Plasma Sci. 16 2

    [3]

    Saviz S, Rezaei Z, Aghamir F M 2012 Chin. Phys. B 21 9

    [4]

    Wang M H, Ren Z M, Meng X Z 2011 Chin. Phys. B 20 5

    [5]

    Bratman V L, Dumesh B S 2002 Int. J. Infrar. Millim. Waves 23 11

    [6]

    Bakhtyari A, Walsh J E, Brownell J H 2002 Phys. Rev. E 65 6

    [7]

    Urata J, Goldstein M, Kimmitt M F, Naumov A, Platt C, Walsh J E 1998 Phys. Rev. Lett. 80 3

    [8]

    Wu J Q 2004 Chin. Phys. Lett. 21 11

    [9]

    Doucas G 2003 Int. J. Infrar. Millim. Waves 24 6

    [10]

    Chen J W, Fu S F, Zhang D K 1984 Acta Opt. Sin. 4 7 (in Chinese) [陈建文, 傅淑芬, 张大可 1984 光学学报 4 7]

    [11]

    Xiong P F, Wang Y T 1996 High Power Laser and Particle Beams 8 1 (in Chinese) [熊平凡, 王友棠 1996 强激光与粒子束 8 1]

    [12]

    Lu Z G, Wei Y Y, Gong Y B 2006 J. Infrar. Millim Waves 25 5 (in Chinese) [路志刚, 魏彦玉, 宫玉彬 2006 红外与毫米波学报 25 5]

    [13]

    Wang W X, Gong Y B 2007 Acta Phys. Sin. 56 12 (in Chinese) [王文祥, 宫玉彬, 魏彦玉 2007 物理学报 56 12]

    [14]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) p382 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论 (北京: 电子工业出版社) 第382页]

    [15]

    Liu W X, Yang Z Q 2008 J. Infrar. Millim. Waves 27 2 (in Chinese) [刘文鑫, 杨梓强 2008 红外与毫米波学报 27 2]

    [16]

    McVey B D 1994 Microwave Theory and Techniques IEEE Trans. on 42 6

    [17]

    Joe J, Louis L J, Share J E, Booske J H 1997 Phys. Plasmas 4 12

    [18]

    Joe J, Share J E, Booske J H 1994 Phys. Plasmas 1 1

  • [1]

    Smith S J, Purcell E M 1953 Phys. Rev. 92 4

    [2]

    Marshall E M, Phillips P M, Walsh J E 1988 IEEE Trans. Plasma Sci. 16 2

    [3]

    Saviz S, Rezaei Z, Aghamir F M 2012 Chin. Phys. B 21 9

    [4]

    Wang M H, Ren Z M, Meng X Z 2011 Chin. Phys. B 20 5

    [5]

    Bratman V L, Dumesh B S 2002 Int. J. Infrar. Millim. Waves 23 11

    [6]

    Bakhtyari A, Walsh J E, Brownell J H 2002 Phys. Rev. E 65 6

    [7]

    Urata J, Goldstein M, Kimmitt M F, Naumov A, Platt C, Walsh J E 1998 Phys. Rev. Lett. 80 3

    [8]

    Wu J Q 2004 Chin. Phys. Lett. 21 11

    [9]

    Doucas G 2003 Int. J. Infrar. Millim. Waves 24 6

    [10]

    Chen J W, Fu S F, Zhang D K 1984 Acta Opt. Sin. 4 7 (in Chinese) [陈建文, 傅淑芬, 张大可 1984 光学学报 4 7]

    [11]

    Xiong P F, Wang Y T 1996 High Power Laser and Particle Beams 8 1 (in Chinese) [熊平凡, 王友棠 1996 强激光与粒子束 8 1]

    [12]

    Lu Z G, Wei Y Y, Gong Y B 2006 J. Infrar. Millim Waves 25 5 (in Chinese) [路志刚, 魏彦玉, 宫玉彬 2006 红外与毫米波学报 25 5]

    [13]

    Wang W X, Gong Y B 2007 Acta Phys. Sin. 56 12 (in Chinese) [王文祥, 宫玉彬, 魏彦玉 2007 物理学报 56 12]

    [14]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) p382 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论 (北京: 电子工业出版社) 第382页]

    [15]

    Liu W X, Yang Z Q 2008 J. Infrar. Millim. Waves 27 2 (in Chinese) [刘文鑫, 杨梓强 2008 红外与毫米波学报 27 2]

    [16]

    McVey B D 1994 Microwave Theory and Techniques IEEE Trans. on 42 6

    [17]

    Joe J, Louis L J, Share J E, Booske J H 1997 Phys. Plasmas 4 12

    [18]

    Joe J, Share J E, Booske J H 1994 Phys. Plasmas 1 1

  • [1] 李春来, 杨本珊, 黄乐, 冯婷, 何瑶, 邹卯荣. 间歇反馈法实现单模Lorenz-Haken激光系统的周期镇定与同步. 物理学报, 2015, 64(3): 030504. doi: 10.7498/aps.64.030504
    [2] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析. 物理学报, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [3] 王仲根, 孙玉发, 王国华. 应用改进的特征基函数法和自适应交叉近似算法快速分析导体目标电磁散射特性. 物理学报, 2013, 62(20): 204102. doi: 10.7498/aps.62.204102
    [4] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [5] 庄彬先, 郭珺, 项元江, 戴小玉, 文双春. F-函数扩展法求解超介质中的亮孤子和暗孤子. 物理学报, 2013, 62(5): 054207. doi: 10.7498/aps.62.054207
    [6] 赵廷玉, 刘钦晓, 余飞鸿. 波前编码系统的点扩散函数稳相法分析. 物理学报, 2012, 61(7): 074207. doi: 10.7498/aps.61.074207
    [7] 崔金超, 宋端, 郭永新. 构造Birkhoff函数(组)的待定张量法. 物理学报, 2012, 61(24): 244501. doi: 10.7498/aps.61.244501
    [8] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [9] 莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解. 物理学报, 2010, 59(3): 1403-1408. doi: 10.7498/aps.59.1403
    [10] 殷久利, 田立新. 一类非线性色散方程中的新型奇异孤立波. 物理学报, 2009, 58(6): 3632-3636. doi: 10.7498/aps.58.3632
    [11] 贺 锋, 郭启波, 刘 辽. 用三角函数法获得非线性Boussinesq方程的广义孤子解. 物理学报, 2007, 56(8): 4326-4330. doi: 10.7498/aps.56.4326
    [12] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 介质加载矩形波导栅行波管的小信号增益计算. 物理学报, 2007, 56(12): 6931-6936. doi: 10.7498/aps.56.6931
    [13] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程. 物理学报, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [14] 谢鸿全, 刘濮鲲. 等离子体填充带状螺旋线的色散方程. 物理学报, 2006, 55(7): 3514-3518. doi: 10.7498/aps.55.3514
    [15] 刘春香, 程传福, 任晓荣, 刘 曼, 滕树云, 徐至展. 随机表面散射光场的格林函数法与基尔霍夫近似的比较. 物理学报, 2004, 53(2): 427-435. doi: 10.7498/aps.53.427
    [16] 黄定江, 张鸿庆. 扩展的双曲函数法和Zakharov方程组的新精确孤立波解. 物理学报, 2004, 53(8): 2434-2438. doi: 10.7498/aps.53.2434
    [17] 常明, 许守廉. Voigt函数法的误差分析. 物理学报, 1993, 42(3): 446-452. doi: 10.7498/aps.42.446
    [18] 胡文忠. 任意多个磁层的层状结构中MSFVW和MSBVW的通用色散方程. 物理学报, 1989, 38(3): 449-457. doi: 10.7498/aps.38.449
    [19] 张承福. 湍流等离子体中的重整化色散方程. 物理学报, 1986, 35(3): 300-310. doi: 10.7498/aps.35.300
    [20] 吴式枢. 高阶无规位相近似法与格林函数方法. 物理学报, 1966, 22(3): 377-380. doi: 10.7498/aps.22.377
计量
  • 文章访问数:  5795
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-05
  • 修回日期:  2013-10-23
  • 刊出日期:  2014-01-05

/

返回文章
返回