搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au诱导形成有序Si纳米孔阵列及其应用

王海澎 柯少颖 杨杰 王茺 杨宇

引用本文:
Citation:

Au诱导形成有序Si纳米孔阵列及其应用

王海澎, 柯少颖, 杨杰, 王茺, 杨宇

Fabrication and application of ordered Si nanopore array induced by Au

Wang Hai-Peng, Ke Shao-Ying, Yang Jie, Wang Chong, Yang Yu
PDF
导出引用
  • 以自组装聚苯乙烯小球(PS)单层膜为掩膜,利用Au对Si表面的催化氧化作用以及KOH溶液对单晶Si的各向异性腐蚀特性,在Si(100)面上制备了一系列尺寸小于100 nm有序可控的Si纳米孔阵列. 扫描电镜(SEM)和原子力显微镜(AFM)等的测试结果显示:当PS小球溶液与甲醇溶液的体积比为9:11时,可形成大面积无缺陷的单层膜;但当体积比过大时,会导致类似双层膜结构的形成;而当体积比过小时,会诱导形成点缺陷和线缺陷. 对PS小球及溅射Au处理过的Si晶片进行KOH溶液腐蚀,随着腐蚀时间变长,纳米孔的横向尺寸和深度增大,其形貌由圆形逐渐变为倒金字塔型,当腐蚀时间超过10 min,纳米孔阵列的有序性遭到破坏. 采用离子束溅射技术在倒金字塔型纳米孔衬底上获得了有序Ge/Si纳米岛,而在圆形纳米孔衬底上获得了有序Ge/Si纳米环. 进一步对有序Ge/Si纳米岛及纳米环的形成机理进行了解释.
    Size-controlled Si nanopore array with a pore size less than 100 nm is fabricated on Si (100) substrates by using monolayer self-assembled and KOH anisotropic wet etching technique. Morphology and structure of the pores are characterized by SEM and AFM. Results show that a large area of defect-free polystyrene (PS) monolayer film can be obtained when the volume ratio of PS solution to methanol solution is 9:11. A larger volume ratio or a smaller volume ratio will induce similar bilayer structure and defects (point and line) in the PS film, respectively. The lateral size and depth of the nanopore will increase with the etching time, and its morphology will change from circular to inverted pyramid type gradually. But the orderly arranged structure will be destroyed as the etching time is over 10 min. On the other hand, ordered Ge/Si nanoislands and nanorings will be grown on nanopore-patterned Si (100) substrates (inverted pyramid and circular nanopores, respectively) by ion beam sputtering. In addition, reasonable interpretations have been proposed for the formation mechanism of the ordered Ge/Si nanostructure.
    • 基金项目: 国家自然科学基金(批准号:11274266)、国家重点基础研究发展计划(973)项目(批准号:2012CB326401)、云南省应用基础研究计划重点项目(批准号:2013FA029)和云南大学理工项目基金(批准号:2013CG024)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274266), the State Key Development Program for Basic Research of China (Grant No. 2012CB326401), the Key Project of Applied Basic Research Program of Yunnan Province, China (Grant No. 2013FA029), and the Science and Technology Project of Yunnan University, China (Grant No. 2013CG024).
    [1]

    Chou S Y, Wei M S, Krauss P R, Fischer P B 1994 J. Appl. Phys. 76 6673

    [2]

    Shwn Y Z, Christopher S F, Jiang Y, Jakubczyk D, Swiatkiewicz J, Prasad P N 2000 J. Phys. Chem. B 104 7577

    [3]

    Wang H Y, Xu X S 2013 Chin. Phys. B 22 054205

    [4]

    Yang S k, Xu F, Ostendorp S, Wilde G, Zhao H P, Lei Y 2011 Adv. Funct. Mater. 21 2446

    [5]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [6]

    Sun P, Xu L, Zhao W M, Li W, Xu J, Ma Z Y, Wu L C, Huang X F, Chen K J 2008 Acta Phys. Sin. 57 1951 (in Chinese)[孙萍, 徐岭, 赵伟明, 李卫, 徐骏, 马忠元, 吴良才, 黄信凡, 陈坤基 2008 物理学报 57 1951]

    [7]

    Chen L M, Li P G, Fu X L, Zhang H Y, Li H L, Tang W H 2005 Acta Phys. Sin. 54 0582 (in Chinese) [陈雷明, 李培刚, 符秀丽, 张海英, L. H. Li, 唐为华 2005 物理学报 54 0582]

    [8]

    Awad Y, Lavallee E, Lau K M, Beauvais J, Drouin D, Cloutier M, Turcotte D, Yang P, Kelkar P 2004 J. Vac. Sci. Technol. A 22 1040

    [9]

    Hamouda F, Barbillon G, Held S, Agnus G, Gogol P, Maroutian T, Scheuring S, Bartenlian B 2009 Microelectron. Eng. 86 583

    [10]

    Brambley D, Martin B,, Prewett P D 1994 Adv. Mater. Opt. Elec-tron. 4 55

    [11]

    Lan H B, Ding Y C 2012 Nano Today. 7 94

    [12]

    Martin O J F 2003 Microelectron. Eng. 24 67

    [13]

    Yang M F, Yu H Y, Sun X W, Li J S, Li X C, Ke L, Hu J H, Wang F, Jiao Z H 2011 Solid State Communications 151 127

    [14]

    Xiang Y J, Liu D F, Zhang Z X, Song L, Zhao X W, Liu L F, Luo S D, Ma W J Shen J, Zhou W Y, Zhou J J, Wang C Y, Wang G, Wu X C 2006 Chin. Phys. B 15 2080

    [15]

    Cheng S L, Lin Y H, Lee S W, Lee T, Chen H, Hu J C, Chen L T 2012 Appl. Surf. Sci. 263 430

    [16]

    Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101

    [17]

    Park K H, Lee S, Koh H K, Lacerda R, Teo K B K, Milne W I 2005 J. Appl. Phys. 97 024311

    [18]

    Sakamoto S, Philippe L, Bechelany M, Michler J, Asoh H, Ono S 2008 Nanotechnology 19 405304

    [19]

    Cheung C L, Nikolic R J, Reinhardt C E, Wang T F 2006 Nanotechnology 17 1339

    [20]

    Ma Y J, Cui J, Fan Y L, Zhong Z Y, Jiang Z M 2011 Nanoscale Research Letters 6 205

    [21]

    Fuhrmann B, Leipner H S, Hoche H R, Schubert L, Werner P, Gosele U 2005 Nano Letters 5 2524

    [22]

    Ma Y J, Zhong Z Y, Yang X J, Fan Y L, Jiang Z M 2013 Nanotechnology 24 015304

    [23]

    Weekes S M, Ogrin F Y, Murray W A, Keatley P S 2007 Langmuir. 23 1057

    [24]

    Eidelloth W, Sandstorm R L 1991 Appl. Phys. Lett. 59 1632

    [25]

    Lu Z C, Zhou M 2011 Journal of Colloid and Interface Science 361 429

    [26]

    Stavroulakis P I, Christou N, Bagnall D 2009 Mater. Sci. Eng. B 165 186

    [27]

    Lindroos V, Tilli M, Lehto A, Motooka T 2010 Handbook of silicon based MEMS materials and technologies (Burlington: William Andrew) pp375-407

    [28]

    Yun M 2000 Journal-Korean Physical Society. 37 605

    [29]

    Shikida M, Sato K, Tokoro K, Uchikawa D 2000 Sens. Actuator A 80 179

    [30]

    Seidel H, Csepregi L, Heuberger A, Baumgartel H 1990 J. Electrochem. Soc. 137 3612

    [31]

    Hollinger G, Himpsel F J 1984 Appl. Phys. Lett. 44 93

    [32]

    Sundaravel B, Sekar K, Kuri G, Satyam P V, Dev B N, Bera Santanu, Narasimhan S V, Chakraborty P, Caccavale F 1999 Appl. Surf. Sci. 137 103

    [33]

    Lu Z H, Sham T K, Norton P R 1993 Solid State Commun. 85 957

    [34]

    Hiraki A, Nicolet M A, Mayer J W 1971 Appl. Phys. Lett. 18 178

    [35]

    Cros A, Derrien J, Salvan F 1981 Surf. Sci. 110 471

    [36]

    Robinson J T, Ratto F, Moutanabbir O, Heun S, Locatelli A, Mentes T O, Aballe L, Dubon O D 2007 Nano Lett. 7 2655

    [37]

    Tu K N, Mayer J W, Feldman L C(translated by Huang X F, Du J F, Chen K J)1997 Electronic Thin Film Sciences (Beijing: Science Press) pp113–114 (in Chinese) [杜经宁, 迈耶J W, 费尔德曼L C著 (黄信凡, 杜家方, 陈坤基译) 1997 电子薄膜科学 (北京: 科学出版社) 第113第–114页]

    [38]

    Zhang Y J, Wang X H, Wang Y X, Liu H L, Yang J H 2008 Journal of Alloys and Compounds 452 473

    [39]

    Schulli T U, Vastola G, Richard M I, Malachias A, Renaud G, Uhlık F, Montalenti F, Chen G, Miglio L, Schaffler F, Bauer G 2009 Phys. Rev. Lett. 102 025502

    [40]

    Katsaros G, Tersoff J, Stoffel M, Rastelli A, Acosta-Diaz P, Kar G S, Costantini G, Schmidt O G, Kern K 2008 Phys. Rev. Lett. 101 096103

    [41]

    Gruetzmacher D, Fromherz T, Dais C, Stangl J, Mueller E, Ekinci Y, Solak H H, Sigg H, Lechner T R, Wintersberger E, Bimer S, Holy V, Bauer G 2007 Nano Lett. 7 3150

    [42]

    Zhong Z Y, Chen P X, Jiang Z M, Bauer G 2008 Appl. Phys. Lett. 93 043106

  • [1]

    Chou S Y, Wei M S, Krauss P R, Fischer P B 1994 J. Appl. Phys. 76 6673

    [2]

    Shwn Y Z, Christopher S F, Jiang Y, Jakubczyk D, Swiatkiewicz J, Prasad P N 2000 J. Phys. Chem. B 104 7577

    [3]

    Wang H Y, Xu X S 2013 Chin. Phys. B 22 054205

    [4]

    Yang S k, Xu F, Ostendorp S, Wilde G, Zhao H P, Lei Y 2011 Adv. Funct. Mater. 21 2446

    [5]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [6]

    Sun P, Xu L, Zhao W M, Li W, Xu J, Ma Z Y, Wu L C, Huang X F, Chen K J 2008 Acta Phys. Sin. 57 1951 (in Chinese)[孙萍, 徐岭, 赵伟明, 李卫, 徐骏, 马忠元, 吴良才, 黄信凡, 陈坤基 2008 物理学报 57 1951]

    [7]

    Chen L M, Li P G, Fu X L, Zhang H Y, Li H L, Tang W H 2005 Acta Phys. Sin. 54 0582 (in Chinese) [陈雷明, 李培刚, 符秀丽, 张海英, L. H. Li, 唐为华 2005 物理学报 54 0582]

    [8]

    Awad Y, Lavallee E, Lau K M, Beauvais J, Drouin D, Cloutier M, Turcotte D, Yang P, Kelkar P 2004 J. Vac. Sci. Technol. A 22 1040

    [9]

    Hamouda F, Barbillon G, Held S, Agnus G, Gogol P, Maroutian T, Scheuring S, Bartenlian B 2009 Microelectron. Eng. 86 583

    [10]

    Brambley D, Martin B,, Prewett P D 1994 Adv. Mater. Opt. Elec-tron. 4 55

    [11]

    Lan H B, Ding Y C 2012 Nano Today. 7 94

    [12]

    Martin O J F 2003 Microelectron. Eng. 24 67

    [13]

    Yang M F, Yu H Y, Sun X W, Li J S, Li X C, Ke L, Hu J H, Wang F, Jiao Z H 2011 Solid State Communications 151 127

    [14]

    Xiang Y J, Liu D F, Zhang Z X, Song L, Zhao X W, Liu L F, Luo S D, Ma W J Shen J, Zhou W Y, Zhou J J, Wang C Y, Wang G, Wu X C 2006 Chin. Phys. B 15 2080

    [15]

    Cheng S L, Lin Y H, Lee S W, Lee T, Chen H, Hu J C, Chen L T 2012 Appl. Surf. Sci. 263 430

    [16]

    Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101

    [17]

    Park K H, Lee S, Koh H K, Lacerda R, Teo K B K, Milne W I 2005 J. Appl. Phys. 97 024311

    [18]

    Sakamoto S, Philippe L, Bechelany M, Michler J, Asoh H, Ono S 2008 Nanotechnology 19 405304

    [19]

    Cheung C L, Nikolic R J, Reinhardt C E, Wang T F 2006 Nanotechnology 17 1339

    [20]

    Ma Y J, Cui J, Fan Y L, Zhong Z Y, Jiang Z M 2011 Nanoscale Research Letters 6 205

    [21]

    Fuhrmann B, Leipner H S, Hoche H R, Schubert L, Werner P, Gosele U 2005 Nano Letters 5 2524

    [22]

    Ma Y J, Zhong Z Y, Yang X J, Fan Y L, Jiang Z M 2013 Nanotechnology 24 015304

    [23]

    Weekes S M, Ogrin F Y, Murray W A, Keatley P S 2007 Langmuir. 23 1057

    [24]

    Eidelloth W, Sandstorm R L 1991 Appl. Phys. Lett. 59 1632

    [25]

    Lu Z C, Zhou M 2011 Journal of Colloid and Interface Science 361 429

    [26]

    Stavroulakis P I, Christou N, Bagnall D 2009 Mater. Sci. Eng. B 165 186

    [27]

    Lindroos V, Tilli M, Lehto A, Motooka T 2010 Handbook of silicon based MEMS materials and technologies (Burlington: William Andrew) pp375-407

    [28]

    Yun M 2000 Journal-Korean Physical Society. 37 605

    [29]

    Shikida M, Sato K, Tokoro K, Uchikawa D 2000 Sens. Actuator A 80 179

    [30]

    Seidel H, Csepregi L, Heuberger A, Baumgartel H 1990 J. Electrochem. Soc. 137 3612

    [31]

    Hollinger G, Himpsel F J 1984 Appl. Phys. Lett. 44 93

    [32]

    Sundaravel B, Sekar K, Kuri G, Satyam P V, Dev B N, Bera Santanu, Narasimhan S V, Chakraborty P, Caccavale F 1999 Appl. Surf. Sci. 137 103

    [33]

    Lu Z H, Sham T K, Norton P R 1993 Solid State Commun. 85 957

    [34]

    Hiraki A, Nicolet M A, Mayer J W 1971 Appl. Phys. Lett. 18 178

    [35]

    Cros A, Derrien J, Salvan F 1981 Surf. Sci. 110 471

    [36]

    Robinson J T, Ratto F, Moutanabbir O, Heun S, Locatelli A, Mentes T O, Aballe L, Dubon O D 2007 Nano Lett. 7 2655

    [37]

    Tu K N, Mayer J W, Feldman L C(translated by Huang X F, Du J F, Chen K J)1997 Electronic Thin Film Sciences (Beijing: Science Press) pp113–114 (in Chinese) [杜经宁, 迈耶J W, 费尔德曼L C著 (黄信凡, 杜家方, 陈坤基译) 1997 电子薄膜科学 (北京: 科学出版社) 第113第–114页]

    [38]

    Zhang Y J, Wang X H, Wang Y X, Liu H L, Yang J H 2008 Journal of Alloys and Compounds 452 473

    [39]

    Schulli T U, Vastola G, Richard M I, Malachias A, Renaud G, Uhlık F, Montalenti F, Chen G, Miglio L, Schaffler F, Bauer G 2009 Phys. Rev. Lett. 102 025502

    [40]

    Katsaros G, Tersoff J, Stoffel M, Rastelli A, Acosta-Diaz P, Kar G S, Costantini G, Schmidt O G, Kern K 2008 Phys. Rev. Lett. 101 096103

    [41]

    Gruetzmacher D, Fromherz T, Dais C, Stangl J, Mueller E, Ekinci Y, Solak H H, Sigg H, Lechner T R, Wintersberger E, Bimer S, Holy V, Bauer G 2007 Nano Lett. 7 3150

    [42]

    Zhong Z Y, Chen P X, Jiang Z M, Bauer G 2008 Appl. Phys. Lett. 93 043106

  • [1] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为. 物理学报, 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] 阴凯, 郭其阳, 张添胤, 李静, 陈向荣. 表面氟化聚苯乙烯纳米微球提升环氧树脂绝缘特性. 物理学报, 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [3] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量. 物理学报, 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [4] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [5] 李英, 胡艳军. 激光波长对纳米光纤俘获和输送聚苯乙烯微球的影响. 物理学报, 2014, 63(4): 048703. doi: 10.7498/aps.63.048703
    [6] 康昆勇, 邓书康, 申兰先, 孙启利, 郝瑞亭, 化麒麟, 唐润生, 杨培志, 李明. 退火对Ge诱导晶化多晶Si薄膜结晶特性的影响. 物理学报, 2012, 61(19): 198101. doi: 10.7498/aps.61.198101
    [7] 曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸. 纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究. 物理学报, 2012, 61(4): 046501. doi: 10.7498/aps.61.046501
    [8] 王凯, 龙华, 付明, 张莉超, 杨光, 陆培祥. Au纳米颗粒阵列中双光子吸收的饱和过程. 物理学报, 2011, 60(3): 034209. doi: 10.7498/aps.60.034209
    [9] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [10] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [11] 王晓冬, 董 鹏, 仪桂云. 制备高质量聚苯乙烯微球胶粒晶体的蒸发自组装法. 物理学报, 2006, 55(4): 2092-2098. doi: 10.7498/aps.55.2092
    [12] 张琦, 孟庆波, 程丙英, 张道中. 大直径聚苯乙烯小球自组织方法制备高质量opal晶体. 物理学报, 2004, 53(1): 58-61. doi: 10.7498/aps.53.58
    [13] 仪桂云, 董 鹏, 王晓冬, 刘丽霞, 陈胜利. 三维有序大孔聚苯乙烯的制备及表征. 物理学报, 2004, 53(10): 3311-3315. doi: 10.7498/aps.53.3311
    [14] 陈红艺, 郭红莲, 倪培根, 张 琦, 程丙英, 张道中. 聚苯乙烯微粒光子晶体的反常透过特性. 物理学报, 2003, 52(9): 2155-2158. doi: 10.7498/aps.52.2155
    [15] 郭红莲, 程丙英, 张道中. 用聚苯乙烯小球模拟生物组织中的光强分布. 物理学报, 2003, 52(2): 324-327. doi: 10.7498/aps.52.324
    [16] 王晓强, 谢二庆, 钱秉中, 贺德衍, 朱智勇, 金运范. 离子辐照对聚苯乙烯低温导电特性的影响. 物理学报, 2002, 51(5): 1094-1097. doi: 10.7498/aps.51.1094
    [17] 张继成, 王红艳, 唐永建, 朱正和, 吴卫东. 氘、氚代聚苯乙烯单体abinitio研究. 物理学报, 2002, 51(6): 1221-1226. doi: 10.7498/aps.51.1221
    [18] 孙永科, 衡成林, 王孙涛, 秦国刚, 马振昌, 宗婉华. Au/(SiO2/Si/SiO2)纳米双势垒/n+-Si结构的电致发光研究. 物理学报, 2000, 49(7): 1404-1408. doi: 10.7498/aps.49.1404
    [19] 王取泉, 赵同云, 杨柏峰, Niu Feng, 周正国, 熊贵光, 田德诚. (Au,Ag)/Si复合纳米颗粒薄膜的微结构与光谱特性. 物理学报, 1999, 48(3): 539-544. doi: 10.7498/aps.48.539
    [20] 徐积仁, 李宜荣. 苯乙烯和聚苯乙烯的联合散射光谱研究. 物理学报, 1961, 17(12): 617-620. doi: 10.7498/aps.17.617
计量
  • 文章访问数:  6027
  • PDF下载量:  884
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-21
  • 修回日期:  2014-01-20
  • 刊出日期:  2014-05-05

/

返回文章
返回