搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受重力梯度扰动的空间机器人姿态动力学非线性特征分析

郭胜鹏 李东旭 范才智 孟云鹤

引用本文:
Citation:

受重力梯度扰动的空间机器人姿态动力学非线性特征分析

郭胜鹏, 李东旭, 范才智, 孟云鹤

Nonlinearity of the attitude motion of space robots subjected to gravitational gradient torque

Guo Sheng-Peng, Li Dong-Xu, Fan Cai-Zhi, Meng Yun-He
PDF
导出引用
  • 研究考虑重力梯度扰动的自由漂浮空间机器人姿态动力学建模方法. 以二连杆空间机器人模型为基础,对机械臂构型固定时系统俯仰姿态受扰运动的非线性特征进行了深入分析. 利用相平面轨迹和Poincaré截面对受扰运动特征进行了描述,反映出受扰运动对轨道偏心率的变化比较敏感,在圆轨道时仅有周期摆动和翻滚两种形式,而在椭圆轨道时出现了准周期运动. 进一步利用系统分岔图、功率谱图对这种非线性运动特征进行了定量分析.
    The attitude dynamics equation of free-floating space robots subjected to gravitational gradient effect is investigated. A two-link space robot is employed to analyze nonlinear properties of the perturbed yaw motion of the system in depth, when the manipulator configuration is fixed. Its nonlinear dynamical behavior is described by phase plane plot and Poincaré section. It is shown that the perturbed motion is sensitive to orbital eccentricity. The system takes on periodic motion and tumbling in circular orbit, while additional quasi-periodic motion in elliptic orbit. Furthermore, these nonlinearities are quantitatively studied by means of bifurcation and power spectrum.
    • 基金项目: 国防科学技术大学基础科学预研计划(批准号:JC13-01-08)资助的课题.
    • Funds: Project supported by the Advanced Research Program for Basic Science of National University of Defense Technology, China (Grant No. JC13-01-08).
    [1]

    Yoshida K 2009 IEEE Robot. Autom. Mag. 16 20

    [2]

    Liao Y H, Li D K, Tang G J 2011 Sci. China: Tech. Sci. 54 1234

    [3]

    Yoshida K 2003 Int. J. Robot. Res. 22 321

    [4]

    Ogilvie A, Allport J, Hannah M, Lymer J 2008 Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (Hollywood: European Space Agency) p25

    [5]

    Nanos K, Papadopoulos E 2011 Intel. Serv. Robot. 4 3

    [6]

    Xu W F, Liang B, Xu Y S 2011 Acta Astronaut. 68 1629

    [7]

    Zhou S, Fu J L, Liu Y S 2010 Chin. Phys. B 19 120301

    [8]

    Vafa Z, Dubowsky S 1987 Proceedings of the IEEE International Conference on Robotics and Automation (Raleigh: IEEE Robotics and Automation Society) p579

    [9]

    Liang B, Xu Y S, Bergerman M 1998 J. Dyn. Syst. Meas. Control 120 1

    [10]

    Dubowsky S, Papadopoulos E 1993 IEEE Trans. Robot. Autom. 9 531

    [11]

    Xu W F, Liu Y, Liang B, Wang X Q, Xu Y S 2010 Multibody Syst. Dyn. 23 293

    [12]

    Xu W F, Liang B, Li C, Xu Y S 2010 Robotica 28 705

    [13]

    Xu W F, Liang B, Li C, Liu Y, Xu Y S 2009 Robotica 27 425

    [14]

    Yu F J 2012 Chin. Phys. B 21 110202

    [15]

    Sun C C, Xu Q C, Sui Y 2013 Chin. Phys. B 22 030507

    [16]

    Zhang T Y, Zhao Y, Xie X P 2012 Chin. Phys. B 21 120503

    [17]

    Wang C Q, Wu P F, Zhou X 2012 Acta Phys. Sin. 61 230503 (in Chinese) [王从庆, 吴鹏飞, 周鑫 2012 物理学报 61 230503]

    [18]

    Xu G Y, Zhang M, Wang H Q 2012 Informatics in Control, Automation and Robotics (Berlin: Springer) pp59-66

    [19]

    Kai T 2012 Acta Astronaut. 74 20

    [20]

    Zhao H C, Wang C Q, Guo Z 2010 Mod. Appl. Sci. 4 175

    [21]

    Cocuzza S, Pretto I, Debei S 2011 Acta Astronaut. 68 1712

    [22]

    Sun W C, Gao H J, Kaynak O 2013 IEEE-ASME Trans. Mechatron. 18 1072

    [23]

    Oda M 2000 Proceedings of the IEEE International Conference on Robotics and Automation (San Francisco: IEEE Robotics and Automation Society) p914

    [24]

    Navabi M, Nasiri N, Dehghan M 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1065

    [25]

    Jia F L, Xu W, Li H N, Hou L Q 2013 Acta Phys. Sin. 62 100503 (in Chinese) [贾飞蕾, 徐伟, 李恒年, 侯黎强 2013 物理学报 62 100503]

    [26]

    Schaub H, Junkins J L 2003 Analytical Mechanics of Space Systems (Reston: American Institue of Aeronautics and Astronautics) pp145-154

    [27]

    Zhang X F, Zhou J B, Zhang C, Bi Q S 2013 Acta Phys. Sin. 62 240505 (in Chinese) [张晓芳, 周建波, 张春, 毕勤胜 2013 物理学报 62 240505]

    [28]

    Li C L, Yu S M 2012 Acta Phys. Sin. 61 040504 (in Chinese) [李春来, 禹思敏 2012 物理学报 61 040504]

    [29]

    Xu W F, Li C, Liang B, Xu Y S, Liu Y, Qiang W Y 2009 Acta Astronaut. 64 109

  • [1]

    Yoshida K 2009 IEEE Robot. Autom. Mag. 16 20

    [2]

    Liao Y H, Li D K, Tang G J 2011 Sci. China: Tech. Sci. 54 1234

    [3]

    Yoshida K 2003 Int. J. Robot. Res. 22 321

    [4]

    Ogilvie A, Allport J, Hannah M, Lymer J 2008 Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (Hollywood: European Space Agency) p25

    [5]

    Nanos K, Papadopoulos E 2011 Intel. Serv. Robot. 4 3

    [6]

    Xu W F, Liang B, Xu Y S 2011 Acta Astronaut. 68 1629

    [7]

    Zhou S, Fu J L, Liu Y S 2010 Chin. Phys. B 19 120301

    [8]

    Vafa Z, Dubowsky S 1987 Proceedings of the IEEE International Conference on Robotics and Automation (Raleigh: IEEE Robotics and Automation Society) p579

    [9]

    Liang B, Xu Y S, Bergerman M 1998 J. Dyn. Syst. Meas. Control 120 1

    [10]

    Dubowsky S, Papadopoulos E 1993 IEEE Trans. Robot. Autom. 9 531

    [11]

    Xu W F, Liu Y, Liang B, Wang X Q, Xu Y S 2010 Multibody Syst. Dyn. 23 293

    [12]

    Xu W F, Liang B, Li C, Xu Y S 2010 Robotica 28 705

    [13]

    Xu W F, Liang B, Li C, Liu Y, Xu Y S 2009 Robotica 27 425

    [14]

    Yu F J 2012 Chin. Phys. B 21 110202

    [15]

    Sun C C, Xu Q C, Sui Y 2013 Chin. Phys. B 22 030507

    [16]

    Zhang T Y, Zhao Y, Xie X P 2012 Chin. Phys. B 21 120503

    [17]

    Wang C Q, Wu P F, Zhou X 2012 Acta Phys. Sin. 61 230503 (in Chinese) [王从庆, 吴鹏飞, 周鑫 2012 物理学报 61 230503]

    [18]

    Xu G Y, Zhang M, Wang H Q 2012 Informatics in Control, Automation and Robotics (Berlin: Springer) pp59-66

    [19]

    Kai T 2012 Acta Astronaut. 74 20

    [20]

    Zhao H C, Wang C Q, Guo Z 2010 Mod. Appl. Sci. 4 175

    [21]

    Cocuzza S, Pretto I, Debei S 2011 Acta Astronaut. 68 1712

    [22]

    Sun W C, Gao H J, Kaynak O 2013 IEEE-ASME Trans. Mechatron. 18 1072

    [23]

    Oda M 2000 Proceedings of the IEEE International Conference on Robotics and Automation (San Francisco: IEEE Robotics and Automation Society) p914

    [24]

    Navabi M, Nasiri N, Dehghan M 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1065

    [25]

    Jia F L, Xu W, Li H N, Hou L Q 2013 Acta Phys. Sin. 62 100503 (in Chinese) [贾飞蕾, 徐伟, 李恒年, 侯黎强 2013 物理学报 62 100503]

    [26]

    Schaub H, Junkins J L 2003 Analytical Mechanics of Space Systems (Reston: American Institue of Aeronautics and Astronautics) pp145-154

    [27]

    Zhang X F, Zhou J B, Zhang C, Bi Q S 2013 Acta Phys. Sin. 62 240505 (in Chinese) [张晓芳, 周建波, 张春, 毕勤胜 2013 物理学报 62 240505]

    [28]

    Li C L, Yu S M 2012 Acta Phys. Sin. 61 040504 (in Chinese) [李春来, 禹思敏 2012 物理学报 61 040504]

    [29]

    Xu W F, Li C, Liang B, Xu Y S, Liu Y, Qiang W Y 2009 Acta Astronaut. 64 109

  • [1] 杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚. Peltier效应: 从线性到非线性. 物理学报, 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
    [2] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [3] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [4] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [5] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学. 物理学报, 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [6] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [7] 曹小群, 宋君强, 张卫民, 赵军, 朱小谦. 海-气耦合动力系统的改进变分迭代解法. 物理学报, 2012, 61(3): 030203. doi: 10.7498/aps.61.030203
    [8] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子. 物理学报, 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [9] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响. 物理学报, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [10] 吕君, 赵正予, 张援农, 周晨. 非线性对大气介质中阵列聚焦声场分布影响的研究. 物理学报, 2010, 59(12): 8662-8668. doi: 10.7498/aps.59.8662
    [11] 邹建龙, 马西奎. 级联功率因数校正变换器的级间耦合非线性动力学行为分析. 物理学报, 2010, 59(6): 3794-3801. doi: 10.7498/aps.59.3794
    [12] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [13] 邹建龙, 马西奎. 一类由饱和引起的非线性现象. 物理学报, 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [14] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [15] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法. 物理学报, 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [16] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [17] 莫嘉琪, 王 辉, 林万涛. 地-气耦合动力系统的近似解析解. 物理学报, 2006, 55(2): 485-489. doi: 10.7498/aps.55.485
    [18] 肖 刘, 苏小保, 刘濮鲲. 基于行波管螺旋导电面模型的空间电荷场研究. 物理学报, 2006, 55(10): 5150-5156. doi: 10.7498/aps.55.5150
    [19] 罗诗裕, 邵明珠, 韦洛霞, 刘曾荣. 位错动力学与系统的全局分叉. 物理学报, 2004, 53(6): 1940-1945. doi: 10.7498/aps.53.1940
    [20] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
计量
  • 文章访问数:  2257
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-27
  • 修回日期:  2014-01-02
  • 刊出日期:  2014-05-05

受重力梯度扰动的空间机器人姿态动力学非线性特征分析

  • 1. 国防科学技术大学航天科学与工程学院, 长沙 410073
    基金项目: 国防科学技术大学基础科学预研计划(批准号:JC13-01-08)资助的课题.

摘要: 研究考虑重力梯度扰动的自由漂浮空间机器人姿态动力学建模方法. 以二连杆空间机器人模型为基础,对机械臂构型固定时系统俯仰姿态受扰运动的非线性特征进行了深入分析. 利用相平面轨迹和Poincaré截面对受扰运动特征进行了描述,反映出受扰运动对轨道偏心率的变化比较敏感,在圆轨道时仅有周期摆动和翻滚两种形式,而在椭圆轨道时出现了准周期运动. 进一步利用系统分岔图、功率谱图对这种非线性运动特征进行了定量分析.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回