搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时滞位置反馈对一类非线性相对转动系统混沌运动和安全盆侵蚀的控制

尚慧琳 韩元波 李伟阳

引用本文:
Citation:

时滞位置反馈对一类非线性相对转动系统混沌运动和安全盆侵蚀的控制

尚慧琳, 韩元波, 李伟阳

Suppression of chaos and basin erosion in a nonlinear relative rotation system by delayed position feedback

Shang Hui-Lin, Han Yuan-Bo, Li Wei-Yang
PDF
导出引用
  • 本文以一类典型的相对转动振动系统为研究对象,研究激励引起的系统混沌运动和安全域侵蚀,并对系统施加时滞位置反馈来抑制这两类复杂动力学行为. 首先,利用Melnikov函数法获得相对转动系统的混沌运动及安全盆侵蚀的激励振幅阈值;其次,通过讨论时滞反馈系统的Hopf分岔条件获得适用于Melnikov函数法的控制参数取值范围,进而利用Melnikov函数法获得时滞受控系统的全局分岔必要条件;最后,利用四阶Rung-Kutta法和点映射法数值模拟了时滞受控系统动力学行为随参数的演变,从而验证解析结果的有效性. 研究发现:在正的增益系数和较短的时滞量下,时滞位置反馈能够有效抑制相对转动系统的混沌运动和安全盆侵蚀现象.
    A typical relative rotation system is considered whose chaotic motion and basin erosion caused by external excitation is investigated in this paper. And a delayed position feedback control is applied in the system for suppressing the two types of complex dynamical behaviors. Firstly, the excitation amplitude threshold of chaotic motion and the basin erosion of an uncontrolled relative rotation system is obtained by the Melnikov method. Secondly, the condition of Hopf bifurcation of a delay controlled system is discussed so as to obtain the available ranges of control parameters in the Melnikov method. Then the necessary condition for the global bifurcation of a delay controlled system is obtained. Finally, the evolutions of the dynamical behavior of the delay controlled system together with its control parameters are presented numerically using the 4th Runge-Kutta method and the point-to-point mapping method, which confirm the validity of the theoretical prediction. It is found that the chaotic motion and basin erosion can be suppressed effectively by delayed position feedback control when the gain is positive and the time delay is short.
    • 基金项目: 国家自然科学基金(批准号:10902071)、上海市教委晨光计划(批准号:11CG61)、上海应用技术学院技术发展基金(批准号:KJ2011-06)和上海应用技术学院重点学科建设项目(批准号:1020Q121001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10902071), the “Twilight” Program of Shanghai Education Commission, China (Grant No. 11CG61), the Foundation of Science and Technology of Shanghai Institute of Technology, China (Grant No. KJ2011-06), and the Leading Academic Discipline Project of Shanghai Institute of Technology, China (Grant No. 1020Q121001).
    [1]

    Liu H R, Zhou Z L, Shi P M 2010 Acta Phys. Sin. 59 6770 (in Chinese)[刘浩然, 朱占龙, 时培明 2010 物理学报 59 6770]

    [2]

    Qiao J M, Wnag K, Li X J, Zhang B 2009 Journal of Yanshan University 33 02159 (in Chinese) [乔杰敏, 王坤, 李秀菊, 张波 2009 燕山大学学报 33 02159]

    [3]

    Shi P M, Liu B, Hou D X 2008 Acta Phys. Sin. 57 1321 (in Chinese) [时培明, 刘彬, 侯东晓 2008 物理学报 57 1321]

    [4]

    Li H B, Wang B H, Zhang Z Q, Liu S, Li Y N 2012 Acta Phys. Sin. 61 094501 (in Chinese)[李海滨, 王博华, 张志强, 刘爽, 李延树 2012 物理学报 61 094501]

    [5]

    Meng Z, Fu L Y, Song M H 2013 Acta Phys. Sin. 62 054501 (in Chinese)[孟宗, 付立元, 宋明厚 2013 物理学报 62 054501]

    [6]

    Wang K 2005 Acta Phys. Sin. 54 5530 (in Chinese) [王坤 2005 物理学报 54 5530]

    [7]

    Wang K, Guan X P, Qiao J M 2010 Acta Phys. Sin. 59 3648 (in Chinese) [王坤, 关新平, 乔杰敏 2010 物理学报 59 3648]

    [8]

    Xu J X, Sun Z C 2001 Chin. Phys. 10 599

    [9]

    Shi P M, Han D Y, Liu B 2010 Chin. Phys. B 19 112

    [10]

    Zhang W M, Li X, Liu S, Li Y Q, Wang B H 2013 Acta Phys. Sin. 62 094502 (in Chinese) [张文明, 李雪, 刘爽, 李雅倩, 王博华 2013 物理学报 62 094502]

    [11]

    Pyragas K 1993 Physics Letters A 181 203

    [12]

    Wang Z H, Hu H Y 2005 International Journal of Bifurcation and Chaos 15 1787

    [13]

    Xu J, Chung K W, Chan C L 2007 SIAM Journal on Applied Dynamical Systems 6 29

    [14]

    Balanov A G, Janson N B, Schöll E 2005 Physical Review E 71 016222

    [15]

    Shao S, Masri K M, Younis M I 2013 Nonlinear Dynamics 74 247

    [16]

    Thompson J M T, McRobie F A 1993 Proceedings of 1st European Nonlinear Oscillation's Conference Hamburg, German, August 16-20, 1993 p107

    [17]

    Wei D Q, Zhang B, Qiu D Y, Luo X S 2010 Nonlinear Dynamics 61 477

    [18]

    Li S, Li Q, Li J R, Feng J Q 2011 Nonlinear Analysis: Real World Applications 121950

    [19]

    Alsaleem F M Younis M I 2010 Smart Materials and Structures 19 035016

    [20]

    Rong H W, Wang X D, Xu W, Fang T 2008 Journal of Sound and Vibration 313 46

    [21]

    Gan C B 2006 Chaos, Solitions and Fractals 30 920

    [22]

    Shang H L, Xu J 2009 Chaos, Solitons and Fractals 41 1880

    [23]

    Shang H L 2011 Acta Phys. Sin. 60 070501 (in Chinese) [尚慧琳 2011 物理学报 60 070501]

    [24]

    Shang H L 2012 Acta Phys. Sin. 61 180506 (in Chinese) [尚慧琳 2012 物理学报 61 180506]

    [25]

    Zhao Y Y, Li C A 2011 Acta Phys. Sin. 60 114305 (in Chinese) [赵艳影, 李昌爱 2011 物理学报 60 114305]

    [26]

    Thomsen J J, Fidlin A 2003 International Journal of Non-Linear Mechanics 38 389

    [27]

    Tang K T 2007 Mathematical Methods for Engineers and Scientists (New York: Springer-Verlag) pp141-147

    [28]

    Hong L, Xu J X 2000 Acta Phys. Sin. 49 1228 (in Chinese)[洪灵, 徐健学 2000 物理学报 49 1228]

  • [1]

    Liu H R, Zhou Z L, Shi P M 2010 Acta Phys. Sin. 59 6770 (in Chinese)[刘浩然, 朱占龙, 时培明 2010 物理学报 59 6770]

    [2]

    Qiao J M, Wnag K, Li X J, Zhang B 2009 Journal of Yanshan University 33 02159 (in Chinese) [乔杰敏, 王坤, 李秀菊, 张波 2009 燕山大学学报 33 02159]

    [3]

    Shi P M, Liu B, Hou D X 2008 Acta Phys. Sin. 57 1321 (in Chinese) [时培明, 刘彬, 侯东晓 2008 物理学报 57 1321]

    [4]

    Li H B, Wang B H, Zhang Z Q, Liu S, Li Y N 2012 Acta Phys. Sin. 61 094501 (in Chinese)[李海滨, 王博华, 张志强, 刘爽, 李延树 2012 物理学报 61 094501]

    [5]

    Meng Z, Fu L Y, Song M H 2013 Acta Phys. Sin. 62 054501 (in Chinese)[孟宗, 付立元, 宋明厚 2013 物理学报 62 054501]

    [6]

    Wang K 2005 Acta Phys. Sin. 54 5530 (in Chinese) [王坤 2005 物理学报 54 5530]

    [7]

    Wang K, Guan X P, Qiao J M 2010 Acta Phys. Sin. 59 3648 (in Chinese) [王坤, 关新平, 乔杰敏 2010 物理学报 59 3648]

    [8]

    Xu J X, Sun Z C 2001 Chin. Phys. 10 599

    [9]

    Shi P M, Han D Y, Liu B 2010 Chin. Phys. B 19 112

    [10]

    Zhang W M, Li X, Liu S, Li Y Q, Wang B H 2013 Acta Phys. Sin. 62 094502 (in Chinese) [张文明, 李雪, 刘爽, 李雅倩, 王博华 2013 物理学报 62 094502]

    [11]

    Pyragas K 1993 Physics Letters A 181 203

    [12]

    Wang Z H, Hu H Y 2005 International Journal of Bifurcation and Chaos 15 1787

    [13]

    Xu J, Chung K W, Chan C L 2007 SIAM Journal on Applied Dynamical Systems 6 29

    [14]

    Balanov A G, Janson N B, Schöll E 2005 Physical Review E 71 016222

    [15]

    Shao S, Masri K M, Younis M I 2013 Nonlinear Dynamics 74 247

    [16]

    Thompson J M T, McRobie F A 1993 Proceedings of 1st European Nonlinear Oscillation's Conference Hamburg, German, August 16-20, 1993 p107

    [17]

    Wei D Q, Zhang B, Qiu D Y, Luo X S 2010 Nonlinear Dynamics 61 477

    [18]

    Li S, Li Q, Li J R, Feng J Q 2011 Nonlinear Analysis: Real World Applications 121950

    [19]

    Alsaleem F M Younis M I 2010 Smart Materials and Structures 19 035016

    [20]

    Rong H W, Wang X D, Xu W, Fang T 2008 Journal of Sound and Vibration 313 46

    [21]

    Gan C B 2006 Chaos, Solitions and Fractals 30 920

    [22]

    Shang H L, Xu J 2009 Chaos, Solitons and Fractals 41 1880

    [23]

    Shang H L 2011 Acta Phys. Sin. 60 070501 (in Chinese) [尚慧琳 2011 物理学报 60 070501]

    [24]

    Shang H L 2012 Acta Phys. Sin. 61 180506 (in Chinese) [尚慧琳 2012 物理学报 61 180506]

    [25]

    Zhao Y Y, Li C A 2011 Acta Phys. Sin. 60 114305 (in Chinese) [赵艳影, 李昌爱 2011 物理学报 60 114305]

    [26]

    Thomsen J J, Fidlin A 2003 International Journal of Non-Linear Mechanics 38 389

    [27]

    Tang K T 2007 Mathematical Methods for Engineers and Scientists (New York: Springer-Verlag) pp141-147

    [28]

    Hong L, Xu J X 2000 Acta Phys. Sin. 49 1228 (in Chinese)[洪灵, 徐健学 2000 物理学报 49 1228]

  • [1] 刘彬, 赵红旭, 侯东晓. 一类含三势阱Mathieu-Duffing振子的相对转动系统的分岔和混沌. 物理学报, 2014, 63(17): 174502. doi: 10.7498/aps.63.174502
    [2] 刘彬, 赵红旭, 侯东晓, 刘浩然. 一类含时变间隙的强非线性相对转动系统分岔和混沌. 物理学报, 2014, 63(7): 074501. doi: 10.7498/aps.63.074501
    [3] 孟宗, 付立元, 宋明厚. 一类非线性相对转动系统的组合谐波分岔行为研究. 物理学报, 2013, 62(5): 054501. doi: 10.7498/aps.62.054501
    [4] 侯东晓, 赵红旭, 刘彬. 一类含Mathieu-Duffing振子的相对转动系统的分岔和混沌. 物理学报, 2013, 62(23): 234501. doi: 10.7498/aps.62.234501
    [5] 张文明, 李雪, 刘爽, 李雅倩, 王博华. 一类非线性相对转动系统的混沌运动及多时滞反馈控制. 物理学报, 2013, 62(9): 094502. doi: 10.7498/aps.62.094502
    [6] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制. 物理学报, 2012, 61(24): 245204. doi: 10.7498/aps.61.245204
    [7] 李海滨, 王博华, 张志强, 刘爽, 李延树. 一类非线性相对转动系统的组合共振分岔与混沌. 物理学报, 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [8] 赵艳影, 李昌爱. 时滞反馈控制扭转振动系统的振动. 物理学报, 2011, 60(11): 114305. doi: 10.7498/aps.60.114305
    [9] 尚慧琳. 时滞位移反馈对Helmholtz振子系统的分形侵蚀安全域的控制. 物理学报, 2011, 60(7): 070501. doi: 10.7498/aps.60.070501
    [10] 时培明, 李纪召, 刘彬, 韩东颖. 一类准周期参激非线性相对转动动力系统的稳定性与时滞反馈控制. 物理学报, 2011, 60(9): 094501. doi: 10.7498/aps.60.094501
    [11] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析. 物理学报, 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [12] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [13] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解. 物理学报, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [14] 刘爽, 刘彬, 时培明. 一类相对转动系统Hopf分岔的非线性反馈控制. 物理学报, 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383
    [15] 时培明, 刘 彬, 侯东晓. 一类相对转动非线性动力系统的混沌运动. 物理学报, 2008, 57(3): 1321-1328. doi: 10.7498/aps.57.1321
    [16] 戎海武, 王向东, 徐 伟, 方 同. 多频谐和与噪声作用下Flickering振子的安全盆侵蚀与混沌. 物理学报, 2008, 57(3): 1506-1513. doi: 10.7498/aps.57.1506
    [17] 董小娟. 含关联噪声与时滞项的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
    [18] 戎海武, 王向东, 徐 伟, 方 同. 谐和与噪声联合作用下Duffing振子的安全盆分叉与混沌. 物理学报, 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [19] 赵 武, 刘 彬. 相对转动运动学方程的级数解. 物理学报, 2005, 54(10): 4543-4548. doi: 10.7498/aps.54.4543
    [20] 戎海武, 王向东, 徐 伟, 方 同. 有界随机噪声激励下软弹簧Duffing振子的安全盆分叉. 物理学报, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
计量
  • 文章访问数:  3049
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-01
  • 修回日期:  2014-01-22
  • 刊出日期:  2014-06-05

时滞位置反馈对一类非线性相对转动系统混沌运动和安全盆侵蚀的控制

  • 1. 上海应用技术学院, 机械工程学院, 上海 200235
    基金项目: 国家自然科学基金(批准号:10902071)、上海市教委晨光计划(批准号:11CG61)、上海应用技术学院技术发展基金(批准号:KJ2011-06)和上海应用技术学院重点学科建设项目(批准号:1020Q121001)资助的课题.

摘要: 本文以一类典型的相对转动振动系统为研究对象,研究激励引起的系统混沌运动和安全域侵蚀,并对系统施加时滞位置反馈来抑制这两类复杂动力学行为. 首先,利用Melnikov函数法获得相对转动系统的混沌运动及安全盆侵蚀的激励振幅阈值;其次,通过讨论时滞反馈系统的Hopf分岔条件获得适用于Melnikov函数法的控制参数取值范围,进而利用Melnikov函数法获得时滞受控系统的全局分岔必要条件;最后,利用四阶Rung-Kutta法和点映射法数值模拟了时滞受控系统动力学行为随参数的演变,从而验证解析结果的有效性. 研究发现:在正的增益系数和较短的时滞量下,时滞位置反馈能够有效抑制相对转动系统的混沌运动和安全盆侵蚀现象.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回