搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种有场旋转和集中功能的新型多功能电磁器件的设计与研究

刘国昌 李超 邵金进 方广有

引用本文:
Citation:

一种有场旋转和集中功能的新型多功能电磁器件的设计与研究

刘国昌, 李超, 邵金进, 方广有

Design and study of a multi-funtional electromagnetic device with functions of field rotating and concentrating

Liu Guo-Chang, Li Chao, Shao Jin-Jin, Fang Guang-You
PDF
导出引用
  • 基于变换光学理论设计了一种新型的多功能电磁器件旋转集中器. 它以特殊的方式引导电磁波使其传播方向在器件核心区发生指定角度的旋转,并同时实现电磁场能量向该核心区的集中. 针对提出的三种等效的旋转集中器结构,分别推导了相应的本构参数表达式,并利用有限元软件对三种结构分别进行了全波仿真. 仿真结果验证了本构参数表达式的正确性. 这三种不同的结构中,前两种结构由三层介质构成,后一种简化为两层介质. 对于给定的任意旋转角度和能量集中率,三种结构可以使电磁场发生等效的传播方向旋转和能量集中两种效果. 这些结果有助于对旋转器和集中器机理的进一步理解,并为复合功能器件的设计奠定了更充分的理论基础. 本文提出的旋转集中器在设计高效率接收天线和特殊电路封装互联器件等方面都有潜在的应用前景.
    A novel multi-functional electromagnetic (EM) device named rotary-concentrator is designed based on transformation optics theory. For its ability to manipulate the EM wave in a special manner, it can rotate the propagation direction of the EM field in the core region to a fixed angle, as well as concentrate the EM energy into the core region simultaneously. For the proposed three equivalent configurations of the rotary-concentrator, the corresponding constitutive parameter expressions are derived respectively, and the full-wave simulations using the finite element software are also carried out. The simulated results validate the derived constitutive parameter expressions. For the three different kinds of configurations, the first two kinds consist of three layers of media, and the last one is simplified to a two-layer configuration. For a given arbitrary rotating angle and an energy concentration ratio, the three configurations can perform propagation direction rotating and energy concentrating in equivalent effect. These results contribute to further understanding of the mechanism of rotator and concentrator, and provide a fuller theoretical basis for the design of multi-functional devices. The proposed rotary-concentrator has potential applications in the design of high efficient receiving antennas and special circuit package interconnecting devices.
    • 基金项目: 国家自然科学基金(批准号:11174280,60990323,60990320)和中国科学院知识创新工程(批准号:YYYJ-1123)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174280, 60990323, and 60990320), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123).
    [1]

    Pendry J B, Schuring D, Smith D R 2006 Science 312 1780

    [2]
    [3]

    Leonhardt U 2006 Science 312 1777

    [4]
    [5]
    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pender J B, Starr A F, Smith D R 2006 Science 314 977

    [7]
    [8]

    Cai W, Chettiar U K 2007 Nat. Photon. 1 224

    [9]
    [10]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901

    [11]
    [12]

    Tretyakov S, Alitalo P, Luukkonen O, Simovski C 2009 Phys. Rev. Lett. 103 103905

    [13]
    [14]

    Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901

    [15]
    [16]

    Leonhardt U, Tyc T 2009 Science 323 110

    [17]
    [18]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [19]

    Valentine J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568

    [20]
    [21]
    [22]

    Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon. 3 461

    [23]
    [24]

    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337

    [25]

    Wu Q, Zhang K, Meng F Y, Li Y W 2010 Acta Phys. Sin. 9 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 物理学报 9 6071]

    [26]
    [27]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Acta Phys. Sin. 60 027801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍 2011 物理学报 60 027801]

    [28]
    [29]
    [30]

    Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L, Zhou H 2010 Chin. Phys. B 19 064101

    [31]
    [32]

    Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101

    [33]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [34]
    [35]
    [36]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87

    [37]

    Yan M, Yan W, Qiu M 2008 Phys. Rev. B 78 125113

    [38]
    [39]

    Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901

    [40]
    [41]

    Zhang J J, Luo Y, Xi S, Chen H S, Ran L X, Wu B I, Kong J A 2008 PIER Letters 81 437

    [42]
    [43]
    [44]

    Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q 2008 Appl. Phys. Lett. 92 261903

    [45]
    [46]

    Cojocaru E 2011 PIER Letters 21 147

    [47]

    Yu G X, Jiang W X, Zhou X Y, Cui T J 2008 Eur. Phys. J. Appl. Phys. 44 181

    [48]
    [49]

    Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994

    [50]
    [51]
    [52]

    Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M 2008 Appl. Phys. Lett. 92 264101

    [53]
    [54]

    Zha i Y B, Ping X W, Jiang W X, Cui T J 2010 Commun. Comput. Phys. 8 823

    [55]
    [56]

    Li T, Huang M, Yang J, Mu S, Mao F 2011 PIER M 18 119

    [57]

    Wang W, Lin L. Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Optics Express 16 11431

    [58]
    [59]
    [60]

    Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573

    [61]
    [62]

    Li W, Guan J G, Wang W 2011 J. Phys. D:Appl. Phys. 44 125401

    [63]
    [64]

    Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A l 2008 Phys. Rev. B 77 125127

    [65]
    [66]

    Farhat M, Guenneau S, Enoch S 2011 J. Comput. Physics 230 2237

    [67]
    [68]

    Zang X F, Jiang C 2011 J. Opt. Soc. Am. B 28 1082

    [69]
    [70]

    Dai L M, Liao C, Zhou H J, Huang W Y 2011 J. Microwaves 27 93 (in Chinese) [代黎明, 廖成, 周海京, 黄文媛 2011 微波学报 27 93]

    [71]

    Chen H Y, Chan C T 2008 Phy. Rev. B 78 054204

    [72]
    [73]

    Chen H Y, Hou B, Chen S Y 2009 Phys. Rev. Lett. 102 183903

    [74]

    Wu Q N, Xu Y D, Chen H Y 2012 Front. Phys. 7 315

    [75]

    Liu G C, Li C, Chen C, Lu Z, Fang G Y 2012 Appl. Phys. Lett. 101 224105

  • [1]

    Pendry J B, Schuring D, Smith D R 2006 Science 312 1780

    [2]
    [3]

    Leonhardt U 2006 Science 312 1777

    [4]
    [5]
    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pender J B, Starr A F, Smith D R 2006 Science 314 977

    [7]
    [8]

    Cai W, Chettiar U K 2007 Nat. Photon. 1 224

    [9]
    [10]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901

    [11]
    [12]

    Tretyakov S, Alitalo P, Luukkonen O, Simovski C 2009 Phys. Rev. Lett. 103 103905

    [13]
    [14]

    Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901

    [15]
    [16]

    Leonhardt U, Tyc T 2009 Science 323 110

    [17]
    [18]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [19]

    Valentine J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568

    [20]
    [21]
    [22]

    Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon. 3 461

    [23]
    [24]

    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337

    [25]

    Wu Q, Zhang K, Meng F Y, Li Y W 2010 Acta Phys. Sin. 9 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 物理学报 9 6071]

    [26]
    [27]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Acta Phys. Sin. 60 027801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍 2011 物理学报 60 027801]

    [28]
    [29]
    [30]

    Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L, Zhou H 2010 Chin. Phys. B 19 064101

    [31]
    [32]

    Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101

    [33]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [34]
    [35]
    [36]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87

    [37]

    Yan M, Yan W, Qiu M 2008 Phys. Rev. B 78 125113

    [38]
    [39]

    Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901

    [40]
    [41]

    Zhang J J, Luo Y, Xi S, Chen H S, Ran L X, Wu B I, Kong J A 2008 PIER Letters 81 437

    [42]
    [43]
    [44]

    Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q 2008 Appl. Phys. Lett. 92 261903

    [45]
    [46]

    Cojocaru E 2011 PIER Letters 21 147

    [47]

    Yu G X, Jiang W X, Zhou X Y, Cui T J 2008 Eur. Phys. J. Appl. Phys. 44 181

    [48]
    [49]

    Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994

    [50]
    [51]
    [52]

    Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M 2008 Appl. Phys. Lett. 92 264101

    [53]
    [54]

    Zha i Y B, Ping X W, Jiang W X, Cui T J 2010 Commun. Comput. Phys. 8 823

    [55]
    [56]

    Li T, Huang M, Yang J, Mu S, Mao F 2011 PIER M 18 119

    [57]

    Wang W, Lin L. Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Optics Express 16 11431

    [58]
    [59]
    [60]

    Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573

    [61]
    [62]

    Li W, Guan J G, Wang W 2011 J. Phys. D:Appl. Phys. 44 125401

    [63]
    [64]

    Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A l 2008 Phys. Rev. B 77 125127

    [65]
    [66]

    Farhat M, Guenneau S, Enoch S 2011 J. Comput. Physics 230 2237

    [67]
    [68]

    Zang X F, Jiang C 2011 J. Opt. Soc. Am. B 28 1082

    [69]
    [70]

    Dai L M, Liao C, Zhou H J, Huang W Y 2011 J. Microwaves 27 93 (in Chinese) [代黎明, 廖成, 周海京, 黄文媛 2011 微波学报 27 93]

    [71]

    Chen H Y, Chan C T 2008 Phy. Rev. B 78 054204

    [72]
    [73]

    Chen H Y, Hou B, Chen S Y 2009 Phys. Rev. Lett. 102 183903

    [74]

    Wu Q N, Xu Y D, Chen H Y 2012 Front. Phys. 7 315

    [75]

    Liu G C, Li C, Chen C, Lu Z, Fang G Y 2012 Appl. Phys. Lett. 101 224105

  • [1] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [3] 刘俊群, 刘耀文. 若干电磁波完全极化参数组的完备变换关系. 物理学报, 2017, 66(5): 054101. doi: 10.7498/aps.66.054101
    [4] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究. 物理学报, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [5] 严柏平, 张成明, 李立毅, 唐志峰, 吕福在, 杨克己. Tb0.3Dy0.7Fe2合金的本构参数辨识方法研究. 物理学报, 2015, 64(2): 027501. doi: 10.7498/aps.64.027501
    [6] 汪会波, 罗孝阳, 董建峰. 基于变换光学的椭圆形透明聚集器的设计研究. 物理学报, 2015, 64(15): 154102. doi: 10.7498/aps.64.154102
    [7] 赵现斌, 严卫, 王迎强, 陆文, 马烁. 基于海面散射模型的全极化合成孔径雷达海洋环境探测关键技术参数设计仿真研究. 物理学报, 2014, 63(21): 218401. doi: 10.7498/aps.63.218401
    [8] 胡海帆, 王颖, 陈杰, 赵士斌. 全三维电离粒子有源像素探测器优化仿真. 物理学报, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [9] 毛福春, 李廷华, 黄铭, 杨晶晶, 贾邦婕. 圆柱形热集中器理论、仿真和实现. 物理学报, 2014, 63(17): 170507. doi: 10.7498/aps.63.170507
    [10] 李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌. 基于变换热力学的任意形状热集中器研究与设计. 物理学报, 2014, 63(5): 054401. doi: 10.7498/aps.63.054401
    [11] 罗孝阳, 刘道亚, 姚丽芳, 董建峰. 新型椭圆形互补隐身斗篷设计. 物理学报, 2014, 63(8): 084101. doi: 10.7498/aps.63.084101
    [12] 徐新河, 肖绍球, 甘月红, 王秉中. 周期性磁谐振材料本构参数的理论分析. 物理学报, 2013, 62(10): 104105. doi: 10.7498/aps.62.104105
    [13] 王战, 罗孝阳, 刘锦景, 董建峰. 二维椭圆形散射转移斗篷的设计研究. 物理学报, 2013, 62(2): 024101. doi: 10.7498/aps.62.024101
    [14] 龚建强, 梁昌洪. 基于TE10矩形波导的异向介质有效本构参数提取算法. 物理学报, 2011, 60(5): 059204. doi: 10.7498/aps.60.059204
    [15] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 任意多面体隐身罩材料参数的推导及验证. 物理学报, 2011, 60(2): 027801. doi: 10.7498/aps.60.027801
    [16] 李立, 张新陆, 崔金辉, 陈历学. Tm3+/Yb3+共掺激光晶体的本征光学双稳特性分析与参数优化. 物理学报, 2010, 59(2): 1052-1062. doi: 10.7498/aps.59.1052
    [17] 程为彬, 郭颖娜, 康思民, 汪跃龙, 霍爱清, 汤楠. Boost变换器中参数斜坡共振控制能力研究. 物理学报, 2009, 58(7): 4439-4448. doi: 10.7498/aps.58.4439
    [18] 华劲松, 经福谦, 董玉斌, 谭 华, 沈中毅, 周显明, 胡绍楼. 钨合金的高压本构研究. 物理学报, 2003, 52(8): 2005-2009. doi: 10.7498/aps.52.2005
    [19] 张瑞峰, 葛春风, 王书慧, 胡智勇, 李世忱. 熔锥型全波耦合器. 物理学报, 2003, 52(2): 390-394. doi: 10.7498/aps.52.390
    [20] 陈岩松, 郑师海, 李德华. 高序光学变换. 物理学报, 1988, 37(2): 261-267. doi: 10.7498/aps.37.261
计量
  • 文章访问数:  4316
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-13
  • 修回日期:  2014-03-19
  • 刊出日期:  2014-08-05

/

返回文章
返回