搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔氧化铝薄膜的光致发光起源: 三种缺陷中心

李国栋 王倩 邓保霞 张雅晶

引用本文:
Citation:

多孔氧化铝薄膜的光致发光起源: 三种缺陷中心

李国栋, 王倩, 邓保霞, 张雅晶

Origin of nanopore alumina film photoluminescence: three kinds of defect centers

Li Guo-Dong, Wang Qian, Deng Bao-Xia, Zhang Ya-Jing
PDF
导出引用
  • 在草酸溶液中用二次阳极氧化法制备了纳米多孔氧化铝薄膜, 分析了制备过程中氧化铝薄膜中缺陷的形成机理. 场发射电子显微镜给出了薄膜的表面形貌和结构. X 射线色散能谱和傅里叶红外透射光谱测试表明, 进入薄膜中的草酸杂质加热到500 ℃未全部分解. 对多孔氧化铝薄膜的光致发光PL光谱做了高斯拟合, 结合测试结果和薄膜中的缺陷分析指出: 多孔氧化铝薄膜的发光由F+, F和草酸杂质相关缺陷引起, 对应发光中心分别在402, 433, 475 nm处, 并提出F中心起主导作用. 对不同草酸浓度中制备的多孔氧化铝薄膜的PL光谱讨论指出: 随草酸浓度增加, 三种发光中心的峰位不会发生变化, 但相对强度发生改变, F+中心和F中心减少, 草酸杂质相关发光中心增加, PL 峰红移. 最后提出通过控制草酸浓度来控制多孔氧化铝薄膜中的草酸杂质. 此研究将对多孔氧化铝薄膜发光起源和机理有更深入的理解, 同时也为多孔氧化铝薄膜的制备提供一种全新的思路.
    Nanopore alumina films (PAF) are fabricated by two-step anodic oxidation of aluminum in oxalic acid. The field emission scanning electron microscope measurement reveals the surface microstructure of PAF, and the defect formation mechanism in PAF is analyzed. The energy dispersive X ray spectroscopy and the Fourier transform infrared spectroscopy results indicate that oxalic ions are incorporated into the PAF in the synthesis process and further heating up to 500 ℃ does not cause oxalic ions to completely decompose. The photoluminescence (PL) spectra of PAF can be divided into three bands by Gaussion fitting method. The measurement results and the defects in PAF show that the PL originate from optical transitions of two kinds of different oxygen-deficient defect centers (F and F+) and oxalic impurities related defect center, PL centered at 402, 433 and 475 nm, respectively. We put forward for the first time that F centers play a leading role. The PL characteristics of the PAF prepared in oxalic acids with different concentrations suggest that three kinds of the luminescent center positions do not change with the increase of the oxalic acid concentration, but their relative intensities change with the increase of the oxalic acid concentration, i.e., F and F+ decrease, oxalic impurities related defects increase, and these will cause the PL peak position to be red-shifted. Finally, we put forward that the oxalic impurities in PAF can be changed by controlling the concentration of oxalic acid. The present experiments and results will be beneficial to the understanding of light-emitting mechanism in PAF, meanwhile, in this paper we propose a new train of thought for PAF preparation application.
    • 基金项目: 国家自然科学基金(批准号: 11065009)和新疆研究生科研创新项目(批准号: XJGRI2014014)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11065009) and the Xinjiang Graduate Research Innovation Project, China (Grant No. XJGRI2014014).
    [1]

    Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411

    [2]

    Masuda H, Fukuda K 1995 Science 268 1466

    [3]

    Zhou W Y, Li Y B, Liu Z Q, Tang D S, Zou X P, Wang G 2001 Chin. Phys. B 10 0218

    [4]

    Cao H Q, Xu Y, Hong J M, Liu H B, Yin G, Li B L, Tie C Y, Xu Z 2001 Adv. Mater. 13 1393

    [5]

    Zhang J J, Li Z Y, Zhang H M, Hou X, Sun H Y 2013 Chin. Phys. B 22 087805

    [6]

    Pen D J, Mbindyo J K N, Carado A J, Mallouk T E, Keating C D, Razavi B, Mayer T S 2002 J. Phys. Chem. B 106 7458

    [7]

    Zhu X F, Han H, Song Y, Ma H T, Qi W X, Lu C, Xu C 2012 Acta Phys. Sin. 61 228202 (in Chinese) [朱绪飞, 韩华, 宋晔, 马宏图, 戚卫星, 路超, 徐辰 2012 物理学报 61 228202]

    [8]

    Li A P, Muller F, Briner A, Nielsch K, Gosele U 1999 Adv. Mater. 11 483

    [9]

    Nahar R K, Khanna V K 1998 Sens. Actuaors B 46 35

    [10]

    Kukhta A V, Gorokh G G, Kolesnik E E, Mitkovets A I, Taoubi M I, Koshin Y A 2002 Surf. Sci. 507-510 593

    [11]

    Azevedo W M, Oliveira G B, Silva Jr E F, Khoury H J, Oliveira de Jesus E F 2006 Radiat. Prot. Dosim. 119 201

    [12]

    Zhang B, Zhang H J, Yang Q H, Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese) [张斌, 张浩佳, 杨秋红, 陆神洲 2010 物理学报 59 1333]

    [13]

    Ghrib M, Ouertania R, Gaidia M 2012 Appl. Surf. Sci. 258 4995

    [14]

    Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802 (in Chinese) [秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶 2014 物理学报 63 198802]

    [15]

    Xu W L, Zheng M J, Wu S, Shen W Z 2004 Appl. Phys. Lett. 85 4364

    [16]

    Liu J, Liu S, Zhou H H, Xie C J, Huang Z Y, Fu C P, Kuang Y F 2014 Thin Solid Films 552 75

    [17]

    Du Y, Cai W L, Mo C M, Chen J, Zhang L D, Zhu X G 1999 Appl. Phys. Lett. 74 2951

    [18]

    Sun X Y, Xu F Q, Li Z M, Zhang W H 2006 J. Lumin. 121 588

    [19]

    Huang G S, Wu X L, Mei Y F, Shao X F, Siu G G 2003 J. Appl. Phys. 93 582

    [20]

    Li Z J, Huang K L 2007 J. Lumin. 127 435

    [21]

    Khan G G, Singh A K, Mandal K 2013 J. Lumin. 134 772

    [22]

    Fang D, Li L C, Xu W L, Wang Y L, Jiang M, Guo X Q, Liu X 2014 Sci. Engineer. B 179 71

    [23]

    Yamamoto Y, Baba N, Tajima S 1981 Nature 289 572

    [24]

    Li Y, Li G H, Meng G W, Zhang L D, Phillipp F 2001 J. Phys. Condens. Matter 13 2691

    [25]

    Huang G S, Wu X L, Yang L W, Shao X F, Siu G G, Chu P K 2005 Appl. Phys. A: Mater. Sci. Process 81 1345

    [26]

    Vrublevsky I, Chernyakova K, Ispas A, Bund A, Gaponik N, Dubavik A 2011 J. Lumin. 131 938

    [27]

    Rauf A, Mehmood M, Ahmed M, Hasan M, Aslam M 2010 J. Lumin. 130 792

    [28]

    Chen W, Tang H G, Shi C S, Deng J, Shi J Y, Zhou Y X, Xia S D, Wang Y X, Yin S T 1995 Appl. Phys. Lett. 67 317

    [29]

    Draeger B G, Summers G P 1979 Phys. Rev. B 19 1172

    [30]

    Fu G S, Wang X Z, Lu W B, Dai W L, Li X K, Yu W 2012 Chin. Phys. B 21 107802

    [31]

    Yang X B, Li H J, Bi Q Y, Cheng Y, Tang Q, Xu J 2008 J. Appl. Phys. 104 123112

  • [1]

    Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411

    [2]

    Masuda H, Fukuda K 1995 Science 268 1466

    [3]

    Zhou W Y, Li Y B, Liu Z Q, Tang D S, Zou X P, Wang G 2001 Chin. Phys. B 10 0218

    [4]

    Cao H Q, Xu Y, Hong J M, Liu H B, Yin G, Li B L, Tie C Y, Xu Z 2001 Adv. Mater. 13 1393

    [5]

    Zhang J J, Li Z Y, Zhang H M, Hou X, Sun H Y 2013 Chin. Phys. B 22 087805

    [6]

    Pen D J, Mbindyo J K N, Carado A J, Mallouk T E, Keating C D, Razavi B, Mayer T S 2002 J. Phys. Chem. B 106 7458

    [7]

    Zhu X F, Han H, Song Y, Ma H T, Qi W X, Lu C, Xu C 2012 Acta Phys. Sin. 61 228202 (in Chinese) [朱绪飞, 韩华, 宋晔, 马宏图, 戚卫星, 路超, 徐辰 2012 物理学报 61 228202]

    [8]

    Li A P, Muller F, Briner A, Nielsch K, Gosele U 1999 Adv. Mater. 11 483

    [9]

    Nahar R K, Khanna V K 1998 Sens. Actuaors B 46 35

    [10]

    Kukhta A V, Gorokh G G, Kolesnik E E, Mitkovets A I, Taoubi M I, Koshin Y A 2002 Surf. Sci. 507-510 593

    [11]

    Azevedo W M, Oliveira G B, Silva Jr E F, Khoury H J, Oliveira de Jesus E F 2006 Radiat. Prot. Dosim. 119 201

    [12]

    Zhang B, Zhang H J, Yang Q H, Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese) [张斌, 张浩佳, 杨秋红, 陆神洲 2010 物理学报 59 1333]

    [13]

    Ghrib M, Ouertania R, Gaidia M 2012 Appl. Surf. Sci. 258 4995

    [14]

    Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802 (in Chinese) [秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶 2014 物理学报 63 198802]

    [15]

    Xu W L, Zheng M J, Wu S, Shen W Z 2004 Appl. Phys. Lett. 85 4364

    [16]

    Liu J, Liu S, Zhou H H, Xie C J, Huang Z Y, Fu C P, Kuang Y F 2014 Thin Solid Films 552 75

    [17]

    Du Y, Cai W L, Mo C M, Chen J, Zhang L D, Zhu X G 1999 Appl. Phys. Lett. 74 2951

    [18]

    Sun X Y, Xu F Q, Li Z M, Zhang W H 2006 J. Lumin. 121 588

    [19]

    Huang G S, Wu X L, Mei Y F, Shao X F, Siu G G 2003 J. Appl. Phys. 93 582

    [20]

    Li Z J, Huang K L 2007 J. Lumin. 127 435

    [21]

    Khan G G, Singh A K, Mandal K 2013 J. Lumin. 134 772

    [22]

    Fang D, Li L C, Xu W L, Wang Y L, Jiang M, Guo X Q, Liu X 2014 Sci. Engineer. B 179 71

    [23]

    Yamamoto Y, Baba N, Tajima S 1981 Nature 289 572

    [24]

    Li Y, Li G H, Meng G W, Zhang L D, Phillipp F 2001 J. Phys. Condens. Matter 13 2691

    [25]

    Huang G S, Wu X L, Yang L W, Shao X F, Siu G G, Chu P K 2005 Appl. Phys. A: Mater. Sci. Process 81 1345

    [26]

    Vrublevsky I, Chernyakova K, Ispas A, Bund A, Gaponik N, Dubavik A 2011 J. Lumin. 131 938

    [27]

    Rauf A, Mehmood M, Ahmed M, Hasan M, Aslam M 2010 J. Lumin. 130 792

    [28]

    Chen W, Tang H G, Shi C S, Deng J, Shi J Y, Zhou Y X, Xia S D, Wang Y X, Yin S T 1995 Appl. Phys. Lett. 67 317

    [29]

    Draeger B G, Summers G P 1979 Phys. Rev. B 19 1172

    [30]

    Fu G S, Wang X Z, Lu W B, Dai W L, Li X K, Yu W 2012 Chin. Phys. B 21 107802

    [31]

    Yang X B, Li H J, Bi Q Y, Cheng Y, Tang Q, Xu J 2008 J. Appl. Phys. 104 123112

计量
  • 文章访问数:  1872
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-24
  • 修回日期:  2014-08-25
  • 刊出日期:  2014-12-05

多孔氧化铝薄膜的光致发光起源: 三种缺陷中心

  • 1. 新疆大学物理科学与技术学院, 乌鲁木齐 830046
    基金项目: 

    国家自然科学基金(批准号: 11065009)和新疆研究生科研创新项目(批准号: XJGRI2014014)资助的课题.

摘要: 在草酸溶液中用二次阳极氧化法制备了纳米多孔氧化铝薄膜, 分析了制备过程中氧化铝薄膜中缺陷的形成机理. 场发射电子显微镜给出了薄膜的表面形貌和结构. X 射线色散能谱和傅里叶红外透射光谱测试表明, 进入薄膜中的草酸杂质加热到500 ℃未全部分解. 对多孔氧化铝薄膜的光致发光PL光谱做了高斯拟合, 结合测试结果和薄膜中的缺陷分析指出: 多孔氧化铝薄膜的发光由F+, F和草酸杂质相关缺陷引起, 对应发光中心分别在402, 433, 475 nm处, 并提出F中心起主导作用. 对不同草酸浓度中制备的多孔氧化铝薄膜的PL光谱讨论指出: 随草酸浓度增加, 三种发光中心的峰位不会发生变化, 但相对强度发生改变, F+中心和F中心减少, 草酸杂质相关发光中心增加, PL 峰红移. 最后提出通过控制草酸浓度来控制多孔氧化铝薄膜中的草酸杂质. 此研究将对多孔氧化铝薄膜发光起源和机理有更深入的理解, 同时也为多孔氧化铝薄膜的制备提供一种全新的思路.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回