搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单周期控制三电平Boost功率因数校正变换器的慢尺度分岔分析

刘洪臣 管恩慧 王云 赵丹 周祺堃 徐永向

引用本文:
Citation:

单周期控制三电平Boost功率因数校正变换器的慢尺度分岔分析

刘洪臣, 管恩慧, 王云, 赵丹, 周祺堃, 徐永向

Analysis on the slow-scale bifurcation behaviors of one-cycle-controlled three-level Boost power factor correction converter

Liu Hong-Chen, Guan En-Hui, Wang Yun, Zhao Dan, Zhou Qi-Kun, Xu Yong-Xiang
PDF
导出引用
  • 对单周期控制三电平Boost功率因数校正(PFC)变换器中存在的慢尺度分岔现象进行了研究, 基于Floquet乘子法分析了主要电路参数对系统稳定性的影响. 首先, 分析了该电路的工作原理, 并由输入输出功率平衡推导出电路的简化模型. 然后, 采用谐波平衡法求解出电路的周期解, 根据Floquet理论分析周期解的稳定性. 通过计算Floquet乘子, 分析了电路中电压反馈电阻Rvf 对系统慢尺度分岔行为的影响. 搭建电路仿真模型, 验证了简化模型及Floquet理论分析的正确性. 最后, 计算了电路中其他参数组成的稳定边界. 研究结果表明, 正确选择三电平Boost PFC变换器的电路参数对于其稳定运行, 提高输入侧功率因数具有重要意义.
    In this paper, the slow-scale bifurcation phenomenon of the one-cycle-controlled three-level Boost power factor correction (PFC) converter is studied in depth, aiming at analyzing the influence of main circuit parameters on the stability of the system based on Floquet multiplier method. Firstly, the working principle of the circuit is analyzed, and a simplified model is derived according to the power balance principle. The periodic solutions are investigated using the harmonic balance method, and its stability is studied by the Floquet theory. By calculating the Floquet multiplier, the influence of the voltage compensator resistor Rvf on the slow-scale behavior of the system is analyzed. The simulation result verifies the correctness of the simplified model and theoratical analysis. Finally, the stability boundary composed of filter capacitor C and load resistor R as well as feedback resistor Rvf and capacitor Cvf is calculated and simulated under certain conditions. The circuit simulation result is consistent with the theoretical calculation. The results show that the correct choice of circuit parameters of three-level Boost PFC converter is very important for achieving its stable operation and improving the power factor.
    • 基金项目: 国家自然科学基金(批准号: 51107016)、国家重点基础研究发展计划(批准号: 2013CB035605)和黑龙江省博士后科研启动金(批准号: LHB-Q12086)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51107016), the National Basic Research Program of China (Grant No. 2013CB035605), and the Staring Foundation of Scientific Research for the Postdoctoral of Heilongjiang Province, China (Grant No. LHB-Q12086).
    [1]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 120504

    [2]

    Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503

    [3]

    Orabi M, Ninomiya T 2002 IEEE 2002 28th Annual Conference of the Industrial Electronics Society 1 209

    [4]

    Tse C K, Drange O, Iu H H C 2003 Proceedings of the 2003 International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 p312

    [5]

    Wong S C, Tse C K, Orabi M, Ninomiya T 2006 IEEE Trans. Circuits Sys. I 53 454

    [6]

    Chu G, Tse C K, Wong S C 2009 IEEE Trans. Power Electron. 24 469

    [7]

    Aroudi A E, Orabi M, Haroun R, Martínez-Salamero L 2011 IEEE Trans. Ind. Electron. 58 3448

    [8]

    Zhang H, Ma X K, Xue B L, Liu W Z 2005 Chaos Soliton. Fract. 23 431

    [9]

    Zou J L, Ma X K 2008 Proc. CSEE 28 38 (in Chinese) [邹建龙, 马西奎 2008 中国电机工程学报 28 38]

    [10]

    Cheng W B, Kang S M, Wang Y L, Tang N, Guo Y N, Huo A Q 2011 Acta Phys. Sin. 60 020506 (in Chinese) [程为彬, 康思民, 汪跃龙, 汤楠, 郭颖娜, 霍爱清 2011 物理学报 60 020506]

    [11]

    Zou J L, Ma X K, Yang Y 2010 Proc. CSEE 30 1 (in Chinese) [邹建龙, 马西奎, 杨宇 2010 中国电机工程学报 30 1]

    [12]

    Ma W 2011 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [马伟 2011 博士学位论文 (重庆: 重庆大学)]

    [13]

    Zhang Y, Zhang H, Ma X K 2010 Acta Phys. Sin. 59 8432 (in Chinese) [张源, 张浩, 马西奎 2010 物理学报 59 8432]

    [14]

    Wu X Q, Tse C K, Wong S C, Lu J N 2006 Int. J. Circuit Theory Appl. 34 341

    [15]

    Wu X Q, Tse C K, Dranga O, Lu J N 2006 IEEE Trans. Circuits Sys. I 53 204

    [16]

    Dai D, Li S N, Ma X K, Tse C K 2007 IEEE Trans. Circuits Sys. I 54 1724

    [17]

    Zou J L, Ma X K 2010 Acta Phys. Sin. 59 3794 (in Chinese) [邹建龙, 马西奎 2010 物理学报 59 3794]

    [18]

    Zhang M T, Jiang Y, Lee F C, Jovanovic M M 1995 Applied Power Electronics Conference and Exposition Dallas, USA, March 5-9, 1995 p434

    [19]

    Wang L B, Zhang C 2006 Power Electron. 40 15 (in Chinese) [王林兵, 张超 2006 电力电子技术 40 15]

    [20]

    Balestero J P R, Tofoli F L, Fernandes R C, Torrico-Bascopé G V, Mendes de Seixas F J 2012 IEEE Trans. Ind. Electron. 59 1565

    [21]

    Sun L, Hu G H, Sun D J, Yin X Y 2001 Acta Mech. Sin. 33 309 (in Chinese) [孙亮, 胡国辉, 孙德军, 尹协远 2001 力学学报 33 309]

  • [1]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 120504

    [2]

    Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503

    [3]

    Orabi M, Ninomiya T 2002 IEEE 2002 28th Annual Conference of the Industrial Electronics Society 1 209

    [4]

    Tse C K, Drange O, Iu H H C 2003 Proceedings of the 2003 International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 p312

    [5]

    Wong S C, Tse C K, Orabi M, Ninomiya T 2006 IEEE Trans. Circuits Sys. I 53 454

    [6]

    Chu G, Tse C K, Wong S C 2009 IEEE Trans. Power Electron. 24 469

    [7]

    Aroudi A E, Orabi M, Haroun R, Martínez-Salamero L 2011 IEEE Trans. Ind. Electron. 58 3448

    [8]

    Zhang H, Ma X K, Xue B L, Liu W Z 2005 Chaos Soliton. Fract. 23 431

    [9]

    Zou J L, Ma X K 2008 Proc. CSEE 28 38 (in Chinese) [邹建龙, 马西奎 2008 中国电机工程学报 28 38]

    [10]

    Cheng W B, Kang S M, Wang Y L, Tang N, Guo Y N, Huo A Q 2011 Acta Phys. Sin. 60 020506 (in Chinese) [程为彬, 康思民, 汪跃龙, 汤楠, 郭颖娜, 霍爱清 2011 物理学报 60 020506]

    [11]

    Zou J L, Ma X K, Yang Y 2010 Proc. CSEE 30 1 (in Chinese) [邹建龙, 马西奎, 杨宇 2010 中国电机工程学报 30 1]

    [12]

    Ma W 2011 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [马伟 2011 博士学位论文 (重庆: 重庆大学)]

    [13]

    Zhang Y, Zhang H, Ma X K 2010 Acta Phys. Sin. 59 8432 (in Chinese) [张源, 张浩, 马西奎 2010 物理学报 59 8432]

    [14]

    Wu X Q, Tse C K, Wong S C, Lu J N 2006 Int. J. Circuit Theory Appl. 34 341

    [15]

    Wu X Q, Tse C K, Dranga O, Lu J N 2006 IEEE Trans. Circuits Sys. I 53 204

    [16]

    Dai D, Li S N, Ma X K, Tse C K 2007 IEEE Trans. Circuits Sys. I 54 1724

    [17]

    Zou J L, Ma X K 2010 Acta Phys. Sin. 59 3794 (in Chinese) [邹建龙, 马西奎 2010 物理学报 59 3794]

    [18]

    Zhang M T, Jiang Y, Lee F C, Jovanovic M M 1995 Applied Power Electronics Conference and Exposition Dallas, USA, March 5-9, 1995 p434

    [19]

    Wang L B, Zhang C 2006 Power Electron. 40 15 (in Chinese) [王林兵, 张超 2006 电力电子技术 40 15]

    [20]

    Balestero J P R, Tofoli F L, Fernandes R C, Torrico-Bascopé G V, Mendes de Seixas F J 2012 IEEE Trans. Ind. Electron. 59 1565

    [21]

    Sun L, Hu G H, Sun D J, Yin X Y 2001 Acta Mech. Sin. 33 309 (in Chinese) [孙亮, 胡国辉, 孙德军, 尹协远 2001 力学学报 33 309]

计量
  • 文章访问数:  2097
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-04
  • 修回日期:  2014-09-16
  • 刊出日期:  2015-02-05

单周期控制三电平Boost功率因数校正变换器的慢尺度分岔分析

  • 1. 哈尔滨工业大学电气工程及自动化学院, 哈尔滨 150001;
  • 2. 上海电气集团股份有限公司中央研究院, 上海 200070
    基金项目: 

    国家自然科学基金(批准号: 51107016)、国家重点基础研究发展计划(批准号: 2013CB035605)和黑龙江省博士后科研启动金(批准号: LHB-Q12086)资助的课题.

摘要: 对单周期控制三电平Boost功率因数校正(PFC)变换器中存在的慢尺度分岔现象进行了研究, 基于Floquet乘子法分析了主要电路参数对系统稳定性的影响. 首先, 分析了该电路的工作原理, 并由输入输出功率平衡推导出电路的简化模型. 然后, 采用谐波平衡法求解出电路的周期解, 根据Floquet理论分析周期解的稳定性. 通过计算Floquet乘子, 分析了电路中电压反馈电阻Rvf 对系统慢尺度分岔行为的影响. 搭建电路仿真模型, 验证了简化模型及Floquet理论分析的正确性. 最后, 计算了电路中其他参数组成的稳定边界. 研究结果表明, 正确选择三电平Boost PFC变换器的电路参数对于其稳定运行, 提高输入侧功率因数具有重要意义.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回