搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合振子系统的多稳态同步分析

黄霞 徐灿 孙玉庭 高健 郑志刚

引用本文:
Citation:

耦合振子系统的多稳态同步分析

黄霞, 徐灿, 孙玉庭, 高健, 郑志刚

Multiple synchronous states in a ring of coupled phase oscillators

Huang Xia, Xu Can, Sun Yu-Ting, Gao Jian, Zheng Zhi-Gang
PDF
导出引用
  • 本文讨论了一维闭合环上Kuramoto相振子在非对称耦合作用下同步区域出现的多定态现象. 研究发现在振子数N3情形下系统不会出现多态现象, 而N4多振子系统则呈现规律的多同步定态. 我们进一步对耦合振子系统中出现的多定态规律及定态稳定性进行了理论分析, 得到了定态渐近稳定解. 数值模拟多体系统发现同步区特征和理论描述相一致. 研究结果显示在绝热条件下随着耦合强度的减小, 系统从不同分支的同步态出发最终会回到同一非同步态. 这说明, 耦合振子系统在非同步区由于运动的遍历性而只具有单一的非同步态, 在发生同步时由于遍历性破缺会产生多个同步定态的共存现象.
    A significant phenomenon in nature is that of collective synchronization, in which a large population of coupled oscillators spontaneously synchronizes at a common frequency. Nonlinearly coupled systems with local interactions are of special importance, in particular, the Kuramoto model in its nearest-neighbor version. In this paper the dynamics of a ring of Kuramoto phase oscillators with unidirectional couplings is investigated. We simulate numerically the bifurcation tree of average frequency observed and the multiple stable states in the synchronization region with the increase of the coupling strength for N4, which cannot be found for N3. Oscillators synchronize at a common frequency =0 when K is larger than a critical value of N=3. Multiple branches with 0 will appear besides the zero branch, and the number of branches increases with increasing oscillators for the system N3. We further present a theoretical analysis on the feature and stability of the multiple synchronous states and obtain the asymptotically stable solutions. When the system of N=2 reaches synchronization, the dynamic equation has two solutions: one is stable and the other is unstable. And there is also one stable solution for N=3 when the system is in global synchronization. For the larger system (N3), we study the identical oscillators and can find all the multiple branches on the bifurcation tree. Our results show that the phase difference between neighboring oscillators has different fixed values corresponding to the numbers of different branches. The behaviors in the synchronization region computed by numerical simulation are consistent with theoretical calculation very well. The systems in which original states belong to different stable states will evolve to the same incoherent state with an adiabatic decreasing of coupling strength. Behaviors of synchronization of all oscillators are exactly the same in non-synchronous region whenever the system evolves from an arbitrary branch according to the bifurcation trees. This result suggests that the only incoherent state can be attributed to the movement ergodicity in the phase space of coupled oscillators in an asynchronous region. When the system achieves synchronization, the phenomenon of the coexistence of multiple stable states will emerge because of the broken ergodicity. All these analyses indicate that the multiple stable states of synchronization in nonlinear coupling systems are indeed generically observable, which can have potential engineering applications.
      通信作者: 郑志刚, zgzheng@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11475022)、中央高校基本科研业务费专项资金(批准号: 2014MS60)资助的课题.
      Corresponding author: Zheng Zhi-Gang, zgzheng@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475022), the Fundamental Research Funds for the Central Universities of China (Grant No. 2014MS60).
    [1]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Dynamics (Cambridge University Press, Cambridge, England)

    [2]

    Strogatz S 2004 Sync: How Order Emerges From Chaos In the Universe, Nature, and Daily Life (Hyperion, New York)

    [3]

    Kuramoto Y 1984 Chemical Oscilations, Waves and Turbulence (Springer-Verlag, Berlin)

    [4]

    Wiesenfeld K, Colet P, Strogatz S H 1996 Phys. Rev. Lett. 76 404

    [5]

    Cross M C, Zumdieck A, Lifshitz R, Rogers J L 2004 Phys. Rev. Lett. 93 224101

    [6]

    Ermentrout B 1991 J. Math. Biol. 29 571

    [7]

    Vinogradova et al T M 2006 Circ. Res. 98 505

    [8]

    Stam C J 2005 Clin. Neurophysiol. 116 2266

    [9]

    Javaloyes J, Perrin M, Politi A 2008 Phys. Rev. E. 78 011108

    [10]

    Zhu T X,Wu Y,Xiao J H 2012 Acta Phys. Sin. 62 040502 (in Chinese) [朱廷祥, 吴晔, 肖井华 2012 物理学报 62 040502]

    [11]

    Feng C, Zou Y L, Wei F Q 2013 Acta Phys. Sin. 62 070506 (in Chinese) [冯聪, 邹艳丽, 韦芳琼 2013 物理学报 62 070506]

    [12]

    Ma X J, Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟, 王延, 郑志刚 2009 物理学报 58 4426]

    [13]

    Park M J, Kwon O M, Park J H, Lee S M, Cha E J 2011 Chin. Phys. B 20 110504

    [14]

    Cai G L, Jiang S Q, Cai S M, Tian L X 2013 Chinese Physics B 22 0502

    [15]

    Kuramoto Y 1975 in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki (Springer, New York, 1975)

    [16]

    Strogatz S H 2000 Physica D 143 1

    [17]

    Acebron J A, Bonilla L L, Vicente J C P, Ritort F, Spigler R 2005 Rev. Mod. Phys. 77 137

    [18]

    Zheng Z G, Hu G, Hu B 1998 Phys. Rev. Lett. 81 5318

    [19]

    Hu B, Zheng G Z 2000 International Journal of Bifurcation and Chaos 10 2399

    [20]

    Ochab J, Gora P F 2010 Acta Physica Polonica B Proceedings Supplement 3 453

    [21]

    Strogatz S H, Mirollo R E 1988 Physica D 31 143

    [22]

    Sakaguchi H 1988 Prog. Theor. Phys. 79 1069

    [23]

    Rogers J L, Wille L T 1996 Phys. Rev. E 54 R2193

    [24]

    El-Nashar H F, Cerdeira H A 2009 Chaos 19 033127

    [25]

    Muruganandam P, Ferreira F F, El-Nashar H, Cerdeira H A 2008 Pramana 70 1143

    [26]

    Maistrenko Y, Popovych O, Burylko O, Tass P A 2004 Phys. Rev. Lett. 93 084102

    [27]

    Brede M 2007 Phys. Lett. A 372 2618

    [28]

    Chen M Y, Shang Y, Zou Y, Kurths J 2008 Phys. Rev. E 77 027101

    [29]

    Liu W Q, Wu Y, Xiao J H, Zhan M 2013 Europhys. Lett. 101 38002

    [30]

    Gomez G J, Gomez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701

    [31]

    Ji P, Peron T, Menck P, Rodrigues F, Kurths J 2013 Phys. Rev. Lett. 110 218701

    [32]

    Zheng Z G, Hu B, Hu G 2000 Phys. Rev. E 62 402

    [33]

    Wu Y, Xiao J H, Hu G, Zhan M 2012 Europhys. Lett. 97 40005

    [34]

    Huang X, Zhan M, Li F, Zheng Z G 2014 J. Phys. A: Math. Theor 47 125101

    [35]

    Tilles P, Ferreira F, Cerdeira 2011 Phys. Rev. E 83 066206

    [36]

    Kim S, Park S H, Ryu C S 1997 Phys. Rev. Lett. 79 2911

    [37]

    Ochab J, Góra P F 2009 arXiv preprint arXiv:0909.0043

  • [1]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Dynamics (Cambridge University Press, Cambridge, England)

    [2]

    Strogatz S 2004 Sync: How Order Emerges From Chaos In the Universe, Nature, and Daily Life (Hyperion, New York)

    [3]

    Kuramoto Y 1984 Chemical Oscilations, Waves and Turbulence (Springer-Verlag, Berlin)

    [4]

    Wiesenfeld K, Colet P, Strogatz S H 1996 Phys. Rev. Lett. 76 404

    [5]

    Cross M C, Zumdieck A, Lifshitz R, Rogers J L 2004 Phys. Rev. Lett. 93 224101

    [6]

    Ermentrout B 1991 J. Math. Biol. 29 571

    [7]

    Vinogradova et al T M 2006 Circ. Res. 98 505

    [8]

    Stam C J 2005 Clin. Neurophysiol. 116 2266

    [9]

    Javaloyes J, Perrin M, Politi A 2008 Phys. Rev. E. 78 011108

    [10]

    Zhu T X,Wu Y,Xiao J H 2012 Acta Phys. Sin. 62 040502 (in Chinese) [朱廷祥, 吴晔, 肖井华 2012 物理学报 62 040502]

    [11]

    Feng C, Zou Y L, Wei F Q 2013 Acta Phys. Sin. 62 070506 (in Chinese) [冯聪, 邹艳丽, 韦芳琼 2013 物理学报 62 070506]

    [12]

    Ma X J, Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟, 王延, 郑志刚 2009 物理学报 58 4426]

    [13]

    Park M J, Kwon O M, Park J H, Lee S M, Cha E J 2011 Chin. Phys. B 20 110504

    [14]

    Cai G L, Jiang S Q, Cai S M, Tian L X 2013 Chinese Physics B 22 0502

    [15]

    Kuramoto Y 1975 in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki (Springer, New York, 1975)

    [16]

    Strogatz S H 2000 Physica D 143 1

    [17]

    Acebron J A, Bonilla L L, Vicente J C P, Ritort F, Spigler R 2005 Rev. Mod. Phys. 77 137

    [18]

    Zheng Z G, Hu G, Hu B 1998 Phys. Rev. Lett. 81 5318

    [19]

    Hu B, Zheng G Z 2000 International Journal of Bifurcation and Chaos 10 2399

    [20]

    Ochab J, Gora P F 2010 Acta Physica Polonica B Proceedings Supplement 3 453

    [21]

    Strogatz S H, Mirollo R E 1988 Physica D 31 143

    [22]

    Sakaguchi H 1988 Prog. Theor. Phys. 79 1069

    [23]

    Rogers J L, Wille L T 1996 Phys. Rev. E 54 R2193

    [24]

    El-Nashar H F, Cerdeira H A 2009 Chaos 19 033127

    [25]

    Muruganandam P, Ferreira F F, El-Nashar H, Cerdeira H A 2008 Pramana 70 1143

    [26]

    Maistrenko Y, Popovych O, Burylko O, Tass P A 2004 Phys. Rev. Lett. 93 084102

    [27]

    Brede M 2007 Phys. Lett. A 372 2618

    [28]

    Chen M Y, Shang Y, Zou Y, Kurths J 2008 Phys. Rev. E 77 027101

    [29]

    Liu W Q, Wu Y, Xiao J H, Zhan M 2013 Europhys. Lett. 101 38002

    [30]

    Gomez G J, Gomez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701

    [31]

    Ji P, Peron T, Menck P, Rodrigues F, Kurths J 2013 Phys. Rev. Lett. 110 218701

    [32]

    Zheng Z G, Hu B, Hu G 2000 Phys. Rev. E 62 402

    [33]

    Wu Y, Xiao J H, Hu G, Zhan M 2012 Europhys. Lett. 97 40005

    [34]

    Huang X, Zhan M, Li F, Zheng Z G 2014 J. Phys. A: Math. Theor 47 125101

    [35]

    Tilles P, Ferreira F, Cerdeira 2011 Phys. Rev. E 83 066206

    [36]

    Kim S, Park S H, Ryu C S 1997 Phys. Rev. Lett. 79 2911

    [37]

    Ochab J, Góra P F 2009 arXiv preprint arXiv:0909.0043

  • [1] 姜磊, 赖莉, 蔚涛, 罗懋康. 不同频率涨落驱动下全局耦合谐振子的集体动力学行为. 物理学报, 2021, 70(13): 130501. doi: 10.7498/aps.70.20210157
    [2] 蔡宗楷, 徐灿, 郑志刚. 高阶耦合相振子系统的同步动力学. 物理学报, 2021, 70(22): 220501. doi: 10.7498/aps.70.20211206
    [3] 王学彬, 徐灿, 郑志刚. 多重耦合振子系统的同步动力学. 物理学报, 2020, 69(17): 170501. doi: 10.7498/aps.69.20200394
    [4] 郑志刚, 翟云, 王学彬, 陈宏斌, 徐灿. 耦合相振子系统同步的序参量理论. 物理学报, 2020, 69(8): 080502. doi: 10.7498/aps.69.20191968
    [5] 舒睿, 陈伟, 肖井华. 多个耦合星型网络的同步优化. 物理学报, 2019, 68(18): 180503. doi: 10.7498/aps.68.20190308
    [6] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究. 物理学报, 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [7] 孙宗鑫, 于洋, 周锋, 刘凇佐, 乔钢. 二进制偏移载波调制的零相关窗水声同步技术研究. 物理学报, 2014, 63(10): 104301. doi: 10.7498/aps.63.104301
    [8] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [9] 刘勇, 谢勇. 分数阶FitzHugh-Nagumo模型神经元的动力学特性及其同步. 物理学报, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [10] 罗润梓. 一个新混沌系统的脉冲控制与同步. 物理学报, 2007, 56(10): 5655-5660. doi: 10.7498/aps.56.5655
    [11] 王占山, 张化光, 王智良. 一类混沌神经网络的全局同步. 物理学报, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [12] 桑新柱, 余重秀, 王葵如. 波长可调谐混沌产生和同步的实验研究. 物理学报, 2006, 55(11): 5728-5732. doi: 10.7498/aps.55.5728
    [13] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步. 物理学报, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [14] 马 军, 廖高华, 莫晓华, 李维学, 张平伟. 超混沌系统的间歇同步与控制. 物理学报, 2005, 54(12): 5585-5590. doi: 10.7498/aps.54.5585
    [15] 陶朝海, 陆君安. 混沌系统的速度反馈同步. 物理学报, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [16] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [17] 张廷宪, 郑志刚. 耦合非线性振子系统的同步研究. 物理学报, 2004, 53(10): 3287-3292. doi: 10.7498/aps.53.3287
    [18] 张旭, 沈柯. 时空混沌的单向耦合同步. 物理学报, 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
    [19] 卢志刚, 于灵慧, 柳晓菁, 高美静, 吴士昌. 克服扰动的混沌逆控制同步系统. 物理学报, 2002, 51(10): 2211-2215. doi: 10.7498/aps.51.2211
    [20] 赖建文, 周世平, 李国辉, 徐得名. 间歇驱动混沌同步法. 物理学报, 2001, 50(1): 21-25. doi: 10.7498/aps.50.21
计量
  • 文章访问数:  6169
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 修回日期:  2015-04-30
  • 刊出日期:  2015-09-05

/

返回文章
返回