搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同频率涨落驱动下全局耦合谐振子的集体动力学行为

姜磊 赖莉 蔚涛 罗懋康

引用本文:
Citation:

不同频率涨落驱动下全局耦合谐振子的集体动力学行为

姜磊, 赖莉, 蔚涛, 罗懋康

Collective behaviors of globally coupled harmonic oscillators driven by different frequency fluctuations

Jiang Lei, Lai Li, Yu Tao, Luo Mao-Kang
PDF
HTML
导出引用
  • 对多粒子耦合系统而言, 环境涨落对各粒子的作用在实际情况中往往是互异的, 为此, 本文研究不同频率涨落驱动下全局耦合过阻尼谐振子系统中的集体动力学行为, 包括稳定、同步和随机共振. 通过随机平均法推导得出粒子行为的统计同步性, 进而得到了系统平均场与单粒子行为在统计意义下的等价性. 并且, 利用该同步性进一步求解得到了输出幅值增益和系统稳定的充要条件. 前者为分析系统随机共振行为奠定了理论基础, 后者给出了本文所得结论的适应范围. 仿真表明, 耦合强度$\varepsilon$的增加或系统规模N的增大会带来两方面的影响: 首先, 稳定区域逐渐增大, 同步时间逐渐缩短; 其次, 系统的有序性增强, 需要更大的噪声强度提供更强的随机性来与之实现最优匹配, 从而关于噪声强度$\sigma$的随机共振峰逐渐右移, 反之亦然.
    For multi-particle coupled systems, the effects of environmental fluctuations on each particle are often different in actual situations. To this end, this paper studies the collective dynamic behaviors in globally coupled harmonic oscillators driven by different frequency fluctuations, including synchronization, stability and stochastic resonance (SR). The statistical synchronicity between particles' behaviors is derived by reasonably grouping variables and using random average method, and then the statistical equivalence between behaviors of mean field and behaviors of single particle is obtained. Therefore, the characteristics of mean field's behaviors (that is, collective behaviors) can be obtained by studying behaviors of any single particle. Moreover, the output amplitude gain and the necessary and sufficient condition for the system stability are obtained by using this synchronization. The former lays a theoretical foundation for analyzing the stochastic resonance behavior of the system, and the latter gives the scope of adaptation of the conclusions in this paper. In terms of numerical simulation, the research is mainly carried out through the stochastic Taylor expansion algorithm. Firstly, the influence of system size N and coupling strength $\varepsilon$ on the stability area and synchronization time is analyzed. The results show that with the increase of the coupling strength $\varepsilon$ or the increase of the system size N, the coupling force between particles increases, and the orderliness of the system increases, so that the stable region gradually increases and the synchronization time gradually decreases. Secondly, the stochastic resonance behavior of the system is studied. Noises provide randomness for the system, and coupling forces provide orderliness for the system. The two compete with each other, so that the system outputs about the noise intensity $\sigma$, the coupling strength $\varepsilon$ and the system size N exhibit stochastic resonance behavior. As the coupling strength increases or the system size increases, the orderliness of the system increases, and greater noise intensity is required to provide stronger randomness to achieve optimal matching with it, so as to the resonance of the noise intensity $\sigma$, the peak gradually shifts to the right. Conversely, as the noise intensity $\sigma$ increases, the resonance peak of the coupling strength $\varepsilon$ and the system size N will also shift to the right.
      通信作者: 蔚涛, scuyutao@163.com
    • 基金项目: 国家自然科学基金青年基金(批准号: 11501385, 11801385)资助的课题
      Corresponding author: Yu Tao, scuyutao@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11501385, 11801385)
    [1]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [2]

    He W, Cao J 2010 IEEE Trans. Neural Networks 21 571Google Scholar

    [3]

    Yang B, Zhang X, Zhang L, Luo M K 2016 Phys. Rev. E 94 022119

    [4]

    Ioannou P J, Farrell B F 2006 Application of Generalized Stability Theory to Deterministic and Statistical Prediction (New York: Cambridge University Press) pp113−126

    [5]

    Dorf R C, Bishop R H 2010 Modern Control Systems (12th Ed.) (Pearson: Prentice Hall) p387

    [6]

    Watts D J, Strogatz S H 1998 Nature 339 440

    [7]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (New York: Cambridge University Press) pp1−7

    [8]

    郑志刚 2019 复杂系统的涌现动力学—从同步到集体输运(上卷) (北京: 科学出版社) 第107页

    Zheng Z G 2019 Emergence Dynamics in Complex System: from Synchronization to Collective Transport (Vol. 1) (Beijing: Science Press) p107 (in Chinese)

    [9]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453Google Scholar

    [10]

    Benzi R, Parisi G, Sutera A, Vulpiani A 1982 Tellus 34 10

    [11]

    Nicolis C 1982 Tellus 34 1

    [12]

    Inchiosa M E, Bulsara A R 1996 Phys. Rev. E 53 R2021Google Scholar

    [13]

    McDonnell M D, Abbott D 2009 PLoS Comput. Biol. 5 e1000348Google Scholar

    [14]

    Gitterman M 2005 Phys. A 352 309Google Scholar

    [15]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [16]

    McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854Google Scholar

    [17]

    Fox R F 1989 Phys. Rev. A 39 4148Google Scholar

    [18]

    Gang H, Ditzinger T, Ning C Z, Haken H 1993 Phys. Rev. Lett. 71 807Google Scholar

    [19]

    Tessone C J, Mirasso C R, Toral R, Gunton J D 2006 Phys. Rev. Lett. 97 194101Google Scholar

    [20]

    Atsumi Y, Hata H, Nakao H 2013 Phys. Rev. E 88 052806Google Scholar

    [21]

    Tang Y, Zou W, Lu J, Kurths J 2012 Phys. Rev. E 85 046207Google Scholar

    [22]

    Pikovsky A, Zaikin A, de la Casa M A 2002 Phys. Rev. Lett. 88 050601Google Scholar

    [23]

    Cubero D 2008 Phys. Rev. E 77 021112Google Scholar

    [24]

    Li J H 2002 Phys. Rev. E 66 031104Google Scholar

    [25]

    Li J H, Han Y X 2006 Phys. Rev. E 74 051115Google Scholar

    [26]

    Li J H, Han Y X 2007 Commun. Theor. Phys. 47 672Google Scholar

    [27]

    Jiang S, Guo F, Zhou Y, Gu T 2007 Phys. A 375 483Google Scholar

    [28]

    Li J H 2011 Chaos 21 043115Google Scholar

    [29]

    He G T, Tian Y, Wang Y 2013 J. Stat. Mech. 2013 P09026Google Scholar

    [30]

    He G T, Luo R Z, Luo M K 2013 Phys. Scr. 88 065009Google Scholar

    [31]

    Yu T, Zhang L, Luo M K 2013 Phys. Scr. 88 045008Google Scholar

    [32]

    He G T, Tian Y, Luo M K 2014 J. Stat. Mech. 2014 P05018Google Scholar

    [33]

    Zhong S C, Ma H, Peng H, Zhang L 2015 Nonlinear Dyn. 82 535Google Scholar

    [34]

    Berdichevsky V, Gitterman M 1996 Europhys. Lett. 36 161Google Scholar

    [35]

    Chandrasekhar S 1943 Rev. Mod. Phys. 15 1Google Scholar

    [36]

    Fulinski A 1993 Phys. Lett. A 180 94Google Scholar

    [37]

    Robertson B and Astumian R D 1991 J. Chem. Phys. 94 7414Google Scholar

    [38]

    Kubo R 1963 J. Math. Phys. 4 174Google Scholar

    [39]

    Jiang S Q, Hou M J, Jia C H, He J R, Gu T X 2009 Chin. Phys. B 18 2667Google Scholar

    [40]

    Nicolis C, Nicolis G 2017 Phys. Rev. E 96 042214Google Scholar

    [41]

    Yu T, Zhang L., Zhong S C, Lai L 2019 Nonlinear Dyn. 96 1735Google Scholar

    [42]

    Droste F, Lindner B 2014 Biol. Cybern. 108 825Google Scholar

    [43]

    Reimann P, Elston T C 1996 Phys. Rev. Lett. 77 5328Google Scholar

    [44]

    Si M, Conrad N, Shin S, Gu J, Zhang J, Alam M, Ye P 2015 IEEE Trans. Electron Devices 62 3508Google Scholar

    [45]

    Van Den Broeck C 1983 J. Stat. Phys. 31 467Google Scholar

    [46]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766Google Scholar

    [47]

    Li J H, Huang Z Q 1998 Phys. Rev. E 57 3917Google Scholar

    [48]

    Bier M 1997 Contemp. Phys. 38 371Google Scholar

    [49]

    Pleiss J, Jähnig F 1991 Biophys. J. 59 795Google Scholar

    [50]

    Li J H, Chen Q H, Zhou X F 2010 Phys. Rev. E 81 041104Google Scholar

    [51]

    Wang Q, Perc M, Duan Z, Chen G 2009 Chaos 19 023112Google Scholar

    [52]

    Hendricks A G, Epureanu B I, Meyhofer E 2009 Phys. Rev. E 79 031929Google Scholar

    [53]

    Stukalin E B, Phillips III H, Kolomeisky A B 2005 Phys. Rev. Lett. 94 238101Google Scholar

    [54]

    Jiang L, Lai L, Yu T, Luo M K 2021 Chin. Phys. B 30 060502Google Scholar

    [55]

    Shapiro V E, Loginov V M 1978 Phys. A 91 563Google Scholar

    [56]

    李炯生, 查建国, 王新茂 2010 线性代数 (第二版) (合肥: 中国科学技术大学出版社) 第374−375页

    Li J S, Zha J G, Wang X M 2010 Linear Algebra (2nd Ed.) (Hefei: University of Science and Techonology of China Press) pp374−375 (in Chinese)

    [57]

    陈光大 1983 华中师范学报 2 134

    Chen G D 1983 Journal of Central China Teachers College 2 134

    [58]

    Kim C, Lee E K, Talkner P 2006 Phys. Rev. E 73 026101Google Scholar

  • 图 1  粒子平均位移及对应频域值的数值仿真结果, 其中$ \varepsilon=1 $, $ A_0=1 $, $ \sigma=1.3, N=10 $, $ \omega=0.5 $, $ \lambda=1 $, $\varOmega= $$ \pi/4$, $ \Delta t=10^{-3} $, $ K=10^4, T=120 $

    Fig. 1.  The average realization and the corresponding frequency domain representation with $ \varepsilon=1 $, $ A_0=1 $, $\sigma=1.3, $$ N=10$, $ \omega=0.5 $, $ \lambda=1 $, $\varOmega=\pi/4$, $ \Delta t=10^{-3} $, $K=10^4, $$ T=120$.

    图 2  仿真结果与理论结果对比图, 其中$\varOmega=\pi/4,\; \omega=0.5,\; $$ \lambda=1,\; \varepsilon=1, \;A_0=1, \;\sigma=2$  (a) $K=10000, \;T=120$; $ {\rm{(b)}} $ $\Delta t=0.001,\; T=120$; $ {\rm{(c)}} $ $K=10000, \;\Delta t=0.001$

    Fig. 2.  Comparison of theoretical and simulation results with $\varOmega=\pi/4, \;\omega=0.5, \;\lambda=1, \;\varepsilon=1,\; A_0=1,\; \sigma=2$: $ {\rm{(a)}} $ $K= 10000,\; T=120$; $ {\rm{(b)}} $ $\Delta t=0.001,\; T=120$; $ {\rm{(c)}} $ $K= 10000, \;\Delta t=0.001$.

    图 3  $ {\rm{(a)}} $ 不同的N所对应的系统稳定性区域, 其中$ \omega=0.5, \lambda=1 $; $ {\rm{(b)}} $ 系统稳定性区域边界随N的变化曲线, 其中$ \varepsilon=1 $, 其他参数同图$ {\rm{(a)}} $

    Fig. 3.  $ {\rm{(a)}} $ System stability region corresponding to different N with $ \omega=0.5,\; \lambda=1 $; $ {\rm{(b)}} $ curve of the boundary of the system stability region with N with $ \varepsilon=1 $, other parameters are the same as panel $ {\rm{(a)}} $

    图 4  粒子平均位移实现, 其中$\omega=0.5,\; \lambda=1,\; \varOmega=\pi/4, \; $$ \varepsilon=1, \;A_0=1,\; N=10$ $ {\rm{(a)}} $ $ \sigma=1.5 $ $ {\rm{(b)}} $ $ \sigma=2 $

    Fig. 4.  The average displacements of particles with $\omega=0.5,\; \lambda=1,\; \varOmega=\pi/4,\; \varepsilon=1,\; A_0=1,\; N=10$: $ {\rm{(a)}} $ $\sigma= $$ 1.5$; $ {\rm{(b)}} $ $ \sigma=2 $.

    图 5  系统(2)在不同参数条件下的仿真实现和所对应的方差, 其中$\omega=0.5,\; \lambda=1, \;\sigma=0.7, \;A_0=1,\; \varOmega=\pi/4$ $ {\rm{(a)}} $ $\varepsilon=1, $$ \; N=2$; $ {\rm{(b)}} $ $\varepsilon=4, \;N=2$; $ {\rm{(c)}} $ $\varepsilon=1,\; N=10$. 三幅子图的顶部图中不同颜色的实线代表不同粒子的平均位移

    Fig. 5.  The realization of the system (2) under different parameter conditions and the corresponding variance with $\omega=0.5,\; \lambda=1,\;\sigma=0.7,\; A_0=1,\; \varOmega=\pi/4$: $ {\rm{(a)}} $ $\varepsilon=1,\; N=2$; $ {\rm{(b)}} $ $\varepsilon=4,\; N=2$; $ {\rm{(c)}} $ $\varepsilon=1,\; N=10$. The solid lines in different colors in the first panel of the three subfigure represent the average displacement of different particles.

    图 6  同步时间$ t_0 $随群体规模N的变化曲线, 所选系统参数与图5相同

    Fig. 6.  The change curve of synchronization time $ t_0 $ with system size N. The selected system parameters are the same as the Fig. 5.

    图 7  不同的$ \sigma $, N$ G(\varepsilon) $的变化曲线, 其中$\omega=0.5, \; $$ \lambda=1,\; A_0=1, \;\varOmega=\pi/4$ $ {\rm{(a)}} $ $ N=10 $; $ {\rm{(b)}} $ $ \sigma=0.7 $

    Fig. 7.  The curve of $ G(\varepsilon) $ under different $ \sigma $ and N with $\omega \!= \!0.5,\; \lambda \!= \!1,\; A_0 \!= \!1,\; \varOmega=\pi/4$: $ {\rm{(a)}} $ $ N \!= \!10 $; $ {\rm{(b)}} $ $ \sigma \!= \!0.7 $

    图 8  不同的$ \sigma $, $ \varepsilon $$ G(N) $的变化曲线, 其中$\omega=0.5,\; $$ \lambda=1, \;A_0=1,\; \varOmega=\pi/4$ $ {\rm{(a)}} $ $ \sigma=0.7 $; $ {\rm{(b)}} $ $ \varepsilon=1 $

    Fig. 8.  The curve of $ G(N) $ under different $ \sigma $ and $ \varepsilon $ with $\omega=0.5,\; \lambda=1,\; A_0=1,\; \varOmega=\pi/4$: $ {\rm{(a)}} $ $ \sigma=0.7 $; $ {\rm{(b)}} $ $ \varepsilon=1 $

    图 9  不同的$ \varepsilon $, N$ G(\sigma) $的变化曲线, 其中$\omega=0.5, \; $$ \lambda=1,\; A_0=1,\; \varOmega=\pi/4$ $ {\rm{(a)}} $ $ N=10 $; $ {\rm{(b)}} $ $ \varepsilon=1 $

    Fig. 9.  The curve of $ G(\sigma) $ under different $ \varepsilon $ and N with $\omega=0.5,\; \lambda=1,\; A_0=1, \;\varOmega=\pi/4$: $ {\rm{(a)}} $ $ N=10 $; $ {\rm{(b)}} $ $ \varepsilon=1 $.

    表 1  变量表

    Table 1.  Variable table

    乘因子 变量
    1 $ \left\langle x_1\right\rangle $ $ \cdots $ $ \left\langle x_i\right\rangle $ $ \cdots $ $ \left\langle x_N\right\rangle $
    $ \xi_1 $ $ \left\langle \xi_1 x_1\right\rangle $ $ \cdots $ $ \left\langle \xi_1 x_i\right\rangle $ $ \cdots $ $ \left\langle \xi_1 x_N\right\rangle $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ \xi_{i_1}\xi_{i_2}\cdots\xi_{i_k} $ $ \left\langle \xi_{i_1}\xi_{i_2}\cdots\xi_{i_k}x_1\right\rangle $ $ \cdots $ $ \left\langle \xi_{i_1}\xi_{i_2}\cdots\xi_{i_k}x_i\right\rangle $ $ \cdots $ $ \left\langle \xi_{i_1}\xi_{i_2}\cdots\xi_{i_k}x_N\right\rangle $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ \xi_{1}\xi_{2}\cdots\xi_{N} $ $ \left\langle \xi_{1}\xi_{2}\cdots\xi_{N}x_1\right\rangle $ $ \cdots $ $ \left\langle\xi_{1}\xi_{2}\cdots\xi_{N}x_i\right\rangle $ $ \cdots $ $ \left\langle \xi_{1}\xi_{2}\cdots\xi_{N}x_N\right\rangle $
    下载: 导出CSV
  • [1]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [2]

    He W, Cao J 2010 IEEE Trans. Neural Networks 21 571Google Scholar

    [3]

    Yang B, Zhang X, Zhang L, Luo M K 2016 Phys. Rev. E 94 022119

    [4]

    Ioannou P J, Farrell B F 2006 Application of Generalized Stability Theory to Deterministic and Statistical Prediction (New York: Cambridge University Press) pp113−126

    [5]

    Dorf R C, Bishop R H 2010 Modern Control Systems (12th Ed.) (Pearson: Prentice Hall) p387

    [6]

    Watts D J, Strogatz S H 1998 Nature 339 440

    [7]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (New York: Cambridge University Press) pp1−7

    [8]

    郑志刚 2019 复杂系统的涌现动力学—从同步到集体输运(上卷) (北京: 科学出版社) 第107页

    Zheng Z G 2019 Emergence Dynamics in Complex System: from Synchronization to Collective Transport (Vol. 1) (Beijing: Science Press) p107 (in Chinese)

    [9]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453Google Scholar

    [10]

    Benzi R, Parisi G, Sutera A, Vulpiani A 1982 Tellus 34 10

    [11]

    Nicolis C 1982 Tellus 34 1

    [12]

    Inchiosa M E, Bulsara A R 1996 Phys. Rev. E 53 R2021Google Scholar

    [13]

    McDonnell M D, Abbott D 2009 PLoS Comput. Biol. 5 e1000348Google Scholar

    [14]

    Gitterman M 2005 Phys. A 352 309Google Scholar

    [15]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [16]

    McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854Google Scholar

    [17]

    Fox R F 1989 Phys. Rev. A 39 4148Google Scholar

    [18]

    Gang H, Ditzinger T, Ning C Z, Haken H 1993 Phys. Rev. Lett. 71 807Google Scholar

    [19]

    Tessone C J, Mirasso C R, Toral R, Gunton J D 2006 Phys. Rev. Lett. 97 194101Google Scholar

    [20]

    Atsumi Y, Hata H, Nakao H 2013 Phys. Rev. E 88 052806Google Scholar

    [21]

    Tang Y, Zou W, Lu J, Kurths J 2012 Phys. Rev. E 85 046207Google Scholar

    [22]

    Pikovsky A, Zaikin A, de la Casa M A 2002 Phys. Rev. Lett. 88 050601Google Scholar

    [23]

    Cubero D 2008 Phys. Rev. E 77 021112Google Scholar

    [24]

    Li J H 2002 Phys. Rev. E 66 031104Google Scholar

    [25]

    Li J H, Han Y X 2006 Phys. Rev. E 74 051115Google Scholar

    [26]

    Li J H, Han Y X 2007 Commun. Theor. Phys. 47 672Google Scholar

    [27]

    Jiang S, Guo F, Zhou Y, Gu T 2007 Phys. A 375 483Google Scholar

    [28]

    Li J H 2011 Chaos 21 043115Google Scholar

    [29]

    He G T, Tian Y, Wang Y 2013 J. Stat. Mech. 2013 P09026Google Scholar

    [30]

    He G T, Luo R Z, Luo M K 2013 Phys. Scr. 88 065009Google Scholar

    [31]

    Yu T, Zhang L, Luo M K 2013 Phys. Scr. 88 045008Google Scholar

    [32]

    He G T, Tian Y, Luo M K 2014 J. Stat. Mech. 2014 P05018Google Scholar

    [33]

    Zhong S C, Ma H, Peng H, Zhang L 2015 Nonlinear Dyn. 82 535Google Scholar

    [34]

    Berdichevsky V, Gitterman M 1996 Europhys. Lett. 36 161Google Scholar

    [35]

    Chandrasekhar S 1943 Rev. Mod. Phys. 15 1Google Scholar

    [36]

    Fulinski A 1993 Phys. Lett. A 180 94Google Scholar

    [37]

    Robertson B and Astumian R D 1991 J. Chem. Phys. 94 7414Google Scholar

    [38]

    Kubo R 1963 J. Math. Phys. 4 174Google Scholar

    [39]

    Jiang S Q, Hou M J, Jia C H, He J R, Gu T X 2009 Chin. Phys. B 18 2667Google Scholar

    [40]

    Nicolis C, Nicolis G 2017 Phys. Rev. E 96 042214Google Scholar

    [41]

    Yu T, Zhang L., Zhong S C, Lai L 2019 Nonlinear Dyn. 96 1735Google Scholar

    [42]

    Droste F, Lindner B 2014 Biol. Cybern. 108 825Google Scholar

    [43]

    Reimann P, Elston T C 1996 Phys. Rev. Lett. 77 5328Google Scholar

    [44]

    Si M, Conrad N, Shin S, Gu J, Zhang J, Alam M, Ye P 2015 IEEE Trans. Electron Devices 62 3508Google Scholar

    [45]

    Van Den Broeck C 1983 J. Stat. Phys. 31 467Google Scholar

    [46]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766Google Scholar

    [47]

    Li J H, Huang Z Q 1998 Phys. Rev. E 57 3917Google Scholar

    [48]

    Bier M 1997 Contemp. Phys. 38 371Google Scholar

    [49]

    Pleiss J, Jähnig F 1991 Biophys. J. 59 795Google Scholar

    [50]

    Li J H, Chen Q H, Zhou X F 2010 Phys. Rev. E 81 041104Google Scholar

    [51]

    Wang Q, Perc M, Duan Z, Chen G 2009 Chaos 19 023112Google Scholar

    [52]

    Hendricks A G, Epureanu B I, Meyhofer E 2009 Phys. Rev. E 79 031929Google Scholar

    [53]

    Stukalin E B, Phillips III H, Kolomeisky A B 2005 Phys. Rev. Lett. 94 238101Google Scholar

    [54]

    Jiang L, Lai L, Yu T, Luo M K 2021 Chin. Phys. B 30 060502Google Scholar

    [55]

    Shapiro V E, Loginov V M 1978 Phys. A 91 563Google Scholar

    [56]

    李炯生, 查建国, 王新茂 2010 线性代数 (第二版) (合肥: 中国科学技术大学出版社) 第374−375页

    Li J S, Zha J G, Wang X M 2010 Linear Algebra (2nd Ed.) (Hefei: University of Science and Techonology of China Press) pp374−375 (in Chinese)

    [57]

    陈光大 1983 华中师范学报 2 134

    Chen G D 1983 Journal of Central China Teachers College 2 134

    [58]

    Kim C, Lee E K, Talkner P 2006 Phys. Rev. E 73 026101Google Scholar

  • [1] 彭皓, 任芮彬, 钟扬帆, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象. 物理学报, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [2] 王烨花, 何美娟. 高斯色噪声激励下非对称双稳耦合网络系统的随机共振. 物理学报, 2022, 71(19): 190501. doi: 10.7498/aps.71.20220909
    [3] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [4] 田艳, 何桂添, 罗懋康. 具有非线性阻尼涨落的线性谐振子的随机共振. 物理学报, 2016, 65(6): 060501. doi: 10.7498/aps.65.060501
    [5] 钟苏川, 蔚涛, 张路, 马洪. 具有质量及频率涨落的欠阻尼线性谐振子的随机共振. 物理学报, 2015, 64(2): 020202. doi: 10.7498/aps.64.020202
    [6] 焦尚彬, 杨蓉, 张青, 谢国. α稳定噪声驱动的非对称双稳随机共振现象. 物理学报, 2015, 64(2): 020502. doi: 10.7498/aps.64.020502
    [7] 冷永刚, 赖志慧. 基于Kramers逃逸速率的Duffing振子广义调参随机共振研究. 物理学报, 2014, 63(2): 020502. doi: 10.7498/aps.63.020502
    [8] 焦尚彬, 任超, 黄伟超, 梁炎明. 稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象. 物理学报, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [9] 张良英, 金国祥, 曹力. 具有频率涨落的简谐力激励下线性谐振子的随机共振. 物理学报, 2012, 61(8): 080502. doi: 10.7498/aps.61.080502
    [10] 冷永刚, 赖志慧, 范胜波, 高毓璣. 二维Duffing振子的大参数随机共振及微弱信号检测研究. 物理学报, 2012, 61(23): 230502. doi: 10.7498/aps.61.230502
    [11] 张路, 钟苏川, 彭皓, 罗懋康. 乘性二次噪声驱动的线性过阻尼振子的随机共振. 物理学报, 2012, 61(13): 130503. doi: 10.7498/aps.61.130503
    [12] 于海涛, 王江, 刘晨, 车艳秋, 邓斌, 魏熙乐. 耦合小世界神经网络的随机共振. 物理学报, 2012, 61(6): 068702. doi: 10.7498/aps.61.068702
    [13] 吕翎, 李钢, 张檬, 李雨珊, 韦琳玲, 于淼. 全局耦合网络的参量辨识与时空混沌同步. 物理学报, 2011, 60(9): 090505. doi: 10.7498/aps.60.090505
    [14] 陈仲生, 杨拥民. 悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究. 物理学报, 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [15] 陆志新, 曹力. 输入方波信号的过阻尼谐振子的随机共振. 物理学报, 2011, 60(11): 110501. doi: 10.7498/aps.60.110501
    [16] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步. 物理学报, 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [17] 林敏, 孟莹. 双稳系统的频率耦合与随机共振机理. 物理学报, 2010, 59(6): 3627-3632. doi: 10.7498/aps.59.3627
    [18] 张莉, 刘立, 曹力. 过阻尼谐振子的随机共振. 物理学报, 2010, 59(3): 1494-1498. doi: 10.7498/aps.59.1494
    [19] 牛玉俊, 徐伟, 戎海武, 王亮, 冯进钤. 随机脉冲微分方程的p阶矩稳定性和参激白噪声作用下Lorenz系统的脉冲同步. 物理学报, 2009, 58(5): 2983-2988. doi: 10.7498/aps.58.2983
    [20] 林 敏, 黄咏梅, 方利民. 耦合双稳系统的随机共振控制. 物理学报, 2008, 57(4): 2048-2052. doi: 10.7498/aps.57.2048
计量
  • 文章访问数:  4831
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 修回日期:  2021-02-13
  • 上网日期:  2021-06-23
  • 刊出日期:  2021-07-05

/

返回文章
返回