搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Casimir-Polder力对左手材料板附近的原子的动力学作用

许静平 常生龙 秦黎 羊亚平

引用本文:
Citation:

Casimir-Polder力对左手材料板附近的原子的动力学作用

许静平, 常生龙, 秦黎, 羊亚平

Dynamic evolution of an excited atom near the left-handed slab acted by the Casimir-Polder force

Xu Jing-Ping, Chang Sheng-Long, Qin Li, Yang Ya-Ping
PDF
导出引用
  • 本文研究了初始处于激发态的两能级原子在左手材料附近运动时Casimir-Polder力对原子动力学的影响. 左手材料有两个的作用: 一是在距离界面波长区域内提供了较强的Casimir-Polder共振力, 二是在这一范围原子的自发辐射受到抑制, 延长了作用时间. 这两种效应使得依靠原子自发辐射这一过程中的Casimir-Polder力能对原子的运动学产生影响, 并将一定初速度的原子排斥远离界面. 由于原子偶极矩的取向会影响Casimir-Polder力的性质, 因此对于某些初始条件(初速度和初始位置), 不同偶极矩取向的原子有不同的运动学结果, 会被吸引到界面或反射出去, 从而对具有不同偶极矩方向的原子进行筛选. 当然由于Casimir-Polder力很小, 能够反射的初速度也很小, 但是已经可以反抗极低温的热涨落, 我们的理论预估值约为15 μupK. 如果和其他约束手段同时作用, 便能对原子的动力学产生更为有利的控制.
    Influence of the Casimir-Polder force on a slowly moving atom near a left-handed slab is discussed. We focus on an initially excited atom and its dynamic evolution during the spontaneous decay process. The left-haned slab is adopted based on two factors: (1) It provides a relatively stronger Casimir-Polder force on the excited atom far away from the interface, and (2) it can lead to an inhibited spontaneous decay rate within such a region. Therefore, we can discuss the dynamic evolution of atoms acted only by the Casimir-Polder force. The dynamic evolution discussed here includes both the evolution of atomic population and the atomic displacement. As the Casimir-Polder force depends on the atomic population, while the decay rate is related to the atomic positions, the atomic dynamic evolution is determined by its initial conditions, i.e. its position and volecity. We choose two initial positions for discussion, i.e. (1) the position with the maximum resonant Casimir-Polder force, and (2) the edge of the resonant Casimir-Polder force of the atom with dipole parallel to the interface. Furthermore, we also consider two kinds of orientations of atomic dipole, i. e. parallel and normal to the interface. It is found that the atom can be repulsed away from a surface by the Casimir-Polder force with a proper initial velocity in certain dipole orientaion during the sponatneous decay process. As the atomic dynamics depends on the orientation of the atom dipole momentum, our result can be used as a reference to distinguish atoms with different dipole momenta. Though the force discussed here exists during the spontaneous decay process, it is much different from the recoil force of the atom when it emits a photon during the spontaneous decay. The statistical average of the recoil force is null, but that of the resonant Casimir-Polder force is not. After reasonable estimation, such a Casimir-Polder force can counteract the thermal fluctuation of temperature of 15 μupK during sponatneous decay. If combined with other constraint methods, it is helpful to control the dynamics of an atom more efficiently.
      通信作者: 许静平, xx_jj_pp@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 11274242, 11474221, 11574229)、自然基金委联合重点基金(批准号: U1330203)、国家重点基础研究发展计划(973计划) (批准号: 2013CB632701)和上海市科委项目(批准号: 15XD1503700)资助的课题.
      Corresponding author: Xu Jing-Ping, xx_jj_pp@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), the National Key Basic ResearchSpecial Foundation of China (NKBRSFC) (Grant No. 2013CB632701), and the Shanghai Science and Technology Committee (Grant No. 15XD1503700).
    [1]

    Casimir H B G, Polder D 1948 Phys. Rev. 73 360

    [2]

    Derjaguin B V, Abrikosova I I 1957 Sov Phys. JETP 3 819

    [3]

    Perreault J D, Cronin A D 2005 Phys. Rev. Lett 95 133201

    [4]

    Oberst H, Morinaga M, Shimizu F, Shimizu K 2003 Appl. Phys. B 76 801

    [5]

    Berman P R, Ford G W, Milonni P W 2014 J. Chem. Phys. 16 164105

    [6]

    Zhou W T, Yu H W 2014 Phys. Rev. A 90 032501

    [7]

    Biehs S A, Agarwal G S 2014 Phys. Rev. A 90 042510

    [8]

    Laliotis A, de Silans T P, Maurin, I, Ducloy M, Bloch D 2014 Nat. Commun. 5 4364

    [9]

    Buhmann S Y, Welsch D G 2007 Progress in Quantum Electronics 31 51

    [10]

    Veselago V G 1968 Soviet Physics Usp. 10 509

    [11]

    Zeng R, Xun J P, Yang Y P, Liu S T 2007 Acta Phys. Sin. 56 3290 (in Chinese) [曾然, 许静平, 羊亚平, 刘树田 2007 物理学报 56 3290]

    [12]

    Yaping Yang, Ran Zeng, Hong Chen, Shiyao Zhu, MSuhail Zubairy, 2010 Phys. Rev. A 81 022114

    [13]

    Xu J P 2011 Chin. Sci. Bull. 56 985 (in Chinese) [许静平, 羊亚平, 陈鸿 2011 科学通报 56 985]

    [14]

    Zeng R, Yang Y P, Zhu S Y 2013 Phys. Rev. A 87 063823

    [15]

    Xu J P, Alamri M, Yang Y P, Zhu S Y, Zubairy M S 2014 Phys. Rev. A 89 053831

    [16]

    Al-Amri M, Babiker M 2008 Eur. Phys. J. D 48 417

    [17]

    Aspect A, Arimondo E, Kaiser R, Vansteenkiste N, Cohen-Tannoudji C 1988 Phys. Rev. Lett 61 826

    [18]

    Kovachy T, Hogan J M, Sugarbaker A, Dickerson S M, Donnelly C A, Overstreet C, Kasevich M A 2015 Phys. Rev. Lett 114 143004

  • [1]

    Casimir H B G, Polder D 1948 Phys. Rev. 73 360

    [2]

    Derjaguin B V, Abrikosova I I 1957 Sov Phys. JETP 3 819

    [3]

    Perreault J D, Cronin A D 2005 Phys. Rev. Lett 95 133201

    [4]

    Oberst H, Morinaga M, Shimizu F, Shimizu K 2003 Appl. Phys. B 76 801

    [5]

    Berman P R, Ford G W, Milonni P W 2014 J. Chem. Phys. 16 164105

    [6]

    Zhou W T, Yu H W 2014 Phys. Rev. A 90 032501

    [7]

    Biehs S A, Agarwal G S 2014 Phys. Rev. A 90 042510

    [8]

    Laliotis A, de Silans T P, Maurin, I, Ducloy M, Bloch D 2014 Nat. Commun. 5 4364

    [9]

    Buhmann S Y, Welsch D G 2007 Progress in Quantum Electronics 31 51

    [10]

    Veselago V G 1968 Soviet Physics Usp. 10 509

    [11]

    Zeng R, Xun J P, Yang Y P, Liu S T 2007 Acta Phys. Sin. 56 3290 (in Chinese) [曾然, 许静平, 羊亚平, 刘树田 2007 物理学报 56 3290]

    [12]

    Yaping Yang, Ran Zeng, Hong Chen, Shiyao Zhu, MSuhail Zubairy, 2010 Phys. Rev. A 81 022114

    [13]

    Xu J P 2011 Chin. Sci. Bull. 56 985 (in Chinese) [许静平, 羊亚平, 陈鸿 2011 科学通报 56 985]

    [14]

    Zeng R, Yang Y P, Zhu S Y 2013 Phys. Rev. A 87 063823

    [15]

    Xu J P, Alamri M, Yang Y P, Zhu S Y, Zubairy M S 2014 Phys. Rev. A 89 053831

    [16]

    Al-Amri M, Babiker M 2008 Eur. Phys. J. D 48 417

    [17]

    Aspect A, Arimondo E, Kaiser R, Vansteenkiste N, Cohen-Tannoudji C 1988 Phys. Rev. Lett 61 826

    [18]

    Kovachy T, Hogan J M, Sugarbaker A, Dickerson S M, Donnelly C A, Overstreet C, Kasevich M A 2015 Phys. Rev. Lett 114 143004

  • [1] 苏玉凤, 彭金璋, 杨红, 黄勇刚. 金属纳米柱的端面修饰对自发辐射增强特性的影响. 物理学报, 2022, 71(16): 166802. doi: 10.7498/aps.71.20220439
    [2] 汪建元, 林光杨, 王佳琪, 李成. 简并态锗在大注入下的自发辐射谱模拟. 物理学报, 2017, 66(15): 156102. doi: 10.7498/aps.66.156102
    [3] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射. 物理学报, 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [4] 秦黎, 李泽亚, 许静平, 张利伟, 羊亚平. 磁单负材料板附近的原子的自发辐射场分布. 物理学报, 2015, 64(1): 014206. doi: 10.7498/aps.64.014206
    [5] 邢容, 谢双媛, 许静平, 羊亚平. 动态各向同性光子晶体中二能级原子的自发辐射. 物理学报, 2014, 63(9): 094205. doi: 10.7498/aps.63.094205
    [6] 赖晓磊. 高聚焦高斯光束对左手性材料球轴向力的光线模型计算. 物理学报, 2013, 62(18): 184201. doi: 10.7498/aps.62.184201
    [7] 王英才, 杨春兰, 王磊, 靳晔. 加长棒脉冲钕玻璃激光器异常实验现象理论研究. 物理学报, 2012, 61(19): 194207. doi: 10.7498/aps.61.194207
    [8] 于明章, 曾小东, 王大伟, 羊亚平. 左手性材料对V形三能级原子光谱的影响. 物理学报, 2012, 61(4): 043203. doi: 10.7498/aps.61.043203
    [9] 张琴, 金康, 唐远河, 屈光辉. V形三能级原子的辐射压力和激光冷却. 物理学报, 2011, 60(5): 053204. doi: 10.7498/aps.60.053204
    [10] 黄仙山, 刘海莲. 运用动态腔环境实现对原子自发辐射过程的调控. 物理学报, 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [11] 陈翔, 米贤武. 二能级原子与高品质因子腔的自发辐射特性. 物理学报, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [12] 黄秀光, 傅思祖, 舒桦, 叶君建, 吴江, 谢志勇, 方智恒, 贾果, 罗平庆, 龙滔, 何钜华, 顾援, 王世绩. 聚乙烯冲击压缩特性实验研究. 物理学报, 2010, 59(9): 6394-6398. doi: 10.7498/aps.59.6394
    [13] 陈 峻, 刘正东, 郑 军, 方慧娟. 基于量子干涉效应的四能级原子系统中的vacuum-induced coherence效应. 物理学报, 2007, 56(11): 6441-6445. doi: 10.7498/aps.56.6441
    [14] 张丽英, 刘正东. Y型四能级原子系统对探测场的吸收和色散. 物理学报, 2005, 54(8): 3641-3645. doi: 10.7498/aps.54.3641
    [15] 谭 荣, 李高翔. 低频强场作用下三维光子晶体中二能级原子的自发辐射性质. 物理学报, 2005, 54(5): 2059-2065. doi: 10.7498/aps.54.2059
    [16] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [17] 刘晓东, 李曙光, 许兴胜, 王义全, 程丙英, 张道中. 用不同密度分布的发光分子探测光子晶体的全态密度. 物理学报, 2004, 53(1): 132-136. doi: 10.7498/aps.53.132
    [18] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制. 物理学报, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [19] 陈 三, 谢双媛, 羊亚平, 陈 鸿. 双能带三维光子晶体中二能级原子的自发辐射. 物理学报, 2003, 52(4): 853-858. doi: 10.7498/aps.52.853
    [20] 邓从豪. 自发辐射的线宽与原子能级移位. 物理学报, 1979, 28(3): 383-392. doi: 10.7498/aps.28.383
计量
  • 文章访问数:  4854
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-07
  • 修回日期:  2015-08-07
  • 刊出日期:  2015-12-05

/

返回文章
返回