搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SrBi4Ti4O15的化学键性质和铁电性研究

肖小红 李世春

引用本文:
Citation:

SrBi4Ti4O15的化学键性质和铁电性研究

肖小红, 李世春

The chemical bond properties and ferroelectricity studies of SrBi4Ti4O15

Xiao Xiao-Hong, Li Shi-Chun
PDF
导出引用
  • 通过原子环境计算方法分析了正交相SrBi4Ti4O15晶体内的键络结构、各原子的空间配位数及局域团簇结构. 在此基础上, 结合晶体分解理论将SrBi4Ti4O15晶体分解为多个二元赝晶体, 根据化学键介电理论计算得到各赝晶体所对应化学键的有效价电子密度、离子性等化学键性质. 通过键偶极矩建立了铁电体自发极化强度与化学键性质之间的关系, 求得正交相SrBi4Ti4O15沿a轴方向的自发极化强度为28.03 C/cm2, 与实验结果和其他理论计算值符合较好.
    Spontaneous polarization as the most immediate parameter in ferroelectricity is always an emphasis in ferroelectric research. Some ferroelectric microscopic theory such as Berry-phase method and first principles calculation are used to study the spontaneous polarization of perovskite type ferroelectrics. SrBi4Ti4O15 is a typical bismuth layered structure ferroelectric, the complexity of its crystal structure makes the ferroelectric research more difficult. This study, from the perspective of chemical bond, analyzes the relationship between the chemical bond properties and the spontaneous polarization, and further explores the atomic bonding state in ferroelectric crystal and its impact on ferroelectricity.By starting from the crystal structure data of SrBi4Ti4O15, the atomic local cluster structure including bond length, atomic coordination situation and the number of atoms in a crystal structure unit are obtained by the atomic environment calculation (AEC). Calculation results show that there are 13 atomic local cluster structures in SrBi4Ti4O15. Then combined with the crystal decomposition method, the SrBi4Ti4O15crystal is decomposed into 38 pseudo-binary crystals, and each pseudo-binary crystal corresponds to a chemical bond. Accordding to the dielectric theory of chemical bond that used in binary crystal, chemical bond properties such as the number of effective valence electron, the effective valence electron density and the bond ionicity are calculated. Through improvement of the bond dipole moment model, the relationship among bond dipole moment, bond properties, and bond parameter is established, and the bond dipole moment of each bond in SrBi4Ti4O15 is calculated.The spontaneous polarization of an ferroelectric can be approximated as the superposition of the spontaneous polarization of various chemical bonds in the crystal, where the spontaneous polarization of chemical bond is due to the bond dipole moment. Based on the traditional polarization theory, the spontaneous polarization can be expressed as the average bond dipole moment per unit volume, and considering the number of molecules in unit cell (Z) and the atomic site occupation factor (SOF), the correlation between bond dipole moment and spontaneous polarization of the bismuth layered ferroelectrics is established. On the basis of this, the calculated spontaneous polarization along a axis in the ferroelectric SrBi4Ti4O15 is 28.03 C/cm2.This study simplifies the complex crystal research by AEC and crystal decomposition method, and studies the ferroelectricity of the bismuth layered ferroelectrics from the viewpoint of chemical bond. The bond dipole moment as the bridge in this study for connecting spontaneous polarization with chemical bond properties, which is a new micro study method in macro-properties of bismuth layered ferroelectrics. Based on this method, the spontaneous polarization of other relevant ferroelectrics such as orthogonal SrBi2Ta2O9, orthogonal Bi4Ti3O12, and tetragonal SrBi4Ti4O15 are calculated, all the results are in good agreement with the experimental values and other theoretically calculated values.
      通信作者: 肖小红, xiaoxiaohong_upc@126.com
    • 基金项目: 国家自然科学基金(批准号: 50371059)和中国石油大学(华东)研究生创新工程项目(批准号: YCX2014052)资助的课题.
      Corresponding author: Xiao Xiao-Hong, xiaoxiaohong_upc@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50371059), and the China University of Petroleum Postgraduate Innovation Project (Grant No. YCX2014052).
    [1]

    Zhao M L, Wang C L, Zhong W L, Zhang P L, Wang J F 2002 Acta Phys. Sin. 51 420 (in Chinese) [赵明磊, 王春雷, 钟维烈, 张沛霖, 王矜奉 2002 物理学报 51 420]

    [2]

    Wang C L, Wu Y Q 1980 Acta Phys. Sin. 29 1490 (in Chinese) [郭常霖, 吴毓琴 1980 物理学报 29 1490]

    [3]

    Hervoches C H, Snedden A, Riggs R, Kilcoyne S H, Manuel P, Lightfoot P 2002 J. Solid State Chem. 164 280

    [4]

    Irie H, Miyayama M 2001 Appl. Phys. Lett. 79 251

    [5]

    Yin Z W 2003 Dielectric Physics (Beijing: Science Press) p29 (in Chinese) [殷之文 2003 电解质物理学(北京: 科学出版社)第29页]

    [6]

    Chen X C 1982 Chin. Sci. Bull. 3 153 (in Chinese) [陈孝琛 1982 科学通报 3 153]

    [7]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [8]

    Resta R 1994 Ferroelectrics 151 49

    [9]

    Resta R, Posternak M, Baldereschi A 1993 Phys. Rev. Lett. 70 1010

    [10]

    Xue W D, Chen Z Y, Yang C, Li Y R 2005 Acta Phys. Sin. 54 857 (in Chinese) [薛卫东, 陈召勇, 杨春, 李言荣 2005 物理学报 54 857]

    [11]

    Feng H J, Liu F M 2008 Chin. Phys. B 17 1874

    [12]

    Ke H, Wang W, Zheng Z X, Tang C L, Jia D C, Lu Z, Zhou Y 2011 J. Phys. Condens. Mat. 23 015901

    [13]

    van Vechten J A 1969 Phys. Rev. 182 891

    [14]

    Phillips J C, Van Vechten J A 1969 Phys. Rev. Lett. 22 705

    [15]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [16]

    Phillips J C, van Vechten J A 1969 Phys. Rev. 183 709

    [17]

    Phillips J C, van Vechten J A 1969 Phys. Rev. Lett. 23 1115

    [18]

    Levine B F 1973 Phys. Rev. B 7 2591

    [19]

    Levine B F 1973 J. Chem. Phys. 59 1463

    [20]

    Zhang S Y 1991 Chin. J. Chem. Phys. 4 109 (in Chinese) [张思远 1991 化学物理学报 4 109]

    [21]

    Zhang S Y 2005 Dielectric Theory of Chemical Bond in Complex Crystals and Its Application (Beijing: Science Press) p25 (in Chinese) [张思远 2005 复杂晶体化学键的介电理论及其应用 (北京: 科学出版社) 第25页]

    [22]

    Zhang S Y, Xue D F 2000 J. Grad. Sch. Acad. Sin. 17 36 (in Chinese) [张思远, 薛冬峰 2000 中国科学院研究生院学报 17 36]

    [23]

    Gao F M, Gao L H 2011 J. Yanshan Univ. 35 189 (in Chinese) [高发明, 高丽华 2011 燕山大学学报 35 189]

    [24]

    Gao F M 2004 Phys. Rev. B 69 094113

    [25]

    Li S C 2011 Mater. Sci. Forum 689 245

    [26]

    Brown I D, Altermatt D 1985 Acta Crystallogr. B: Struct. Sci. 41 244

    [27]

    Schwartz M 2012 Principles of Electrodynamics (New York: Dover Publications) p45

    [28]

    Irie H, Miyayama M, Kudo T 2001 J. Appl. Phys. 90 4089

    [29]

    Newnham R E, Wolfe R W, Dorrian J F 1971 Mater. Res. Bull. 6 1029

    [30]

    Goto T, Noguchi Y, Soga M, Miyayama M 2005 Mater. Res. Bull. 40 1044

    [31]

    Amorn H, Bdikin I K, Kholkin A L, Costa M E V 2006 Phys. Solid State 48 537

  • [1]

    Zhao M L, Wang C L, Zhong W L, Zhang P L, Wang J F 2002 Acta Phys. Sin. 51 420 (in Chinese) [赵明磊, 王春雷, 钟维烈, 张沛霖, 王矜奉 2002 物理学报 51 420]

    [2]

    Wang C L, Wu Y Q 1980 Acta Phys. Sin. 29 1490 (in Chinese) [郭常霖, 吴毓琴 1980 物理学报 29 1490]

    [3]

    Hervoches C H, Snedden A, Riggs R, Kilcoyne S H, Manuel P, Lightfoot P 2002 J. Solid State Chem. 164 280

    [4]

    Irie H, Miyayama M 2001 Appl. Phys. Lett. 79 251

    [5]

    Yin Z W 2003 Dielectric Physics (Beijing: Science Press) p29 (in Chinese) [殷之文 2003 电解质物理学(北京: 科学出版社)第29页]

    [6]

    Chen X C 1982 Chin. Sci. Bull. 3 153 (in Chinese) [陈孝琛 1982 科学通报 3 153]

    [7]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [8]

    Resta R 1994 Ferroelectrics 151 49

    [9]

    Resta R, Posternak M, Baldereschi A 1993 Phys. Rev. Lett. 70 1010

    [10]

    Xue W D, Chen Z Y, Yang C, Li Y R 2005 Acta Phys. Sin. 54 857 (in Chinese) [薛卫东, 陈召勇, 杨春, 李言荣 2005 物理学报 54 857]

    [11]

    Feng H J, Liu F M 2008 Chin. Phys. B 17 1874

    [12]

    Ke H, Wang W, Zheng Z X, Tang C L, Jia D C, Lu Z, Zhou Y 2011 J. Phys. Condens. Mat. 23 015901

    [13]

    van Vechten J A 1969 Phys. Rev. 182 891

    [14]

    Phillips J C, Van Vechten J A 1969 Phys. Rev. Lett. 22 705

    [15]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [16]

    Phillips J C, van Vechten J A 1969 Phys. Rev. 183 709

    [17]

    Phillips J C, van Vechten J A 1969 Phys. Rev. Lett. 23 1115

    [18]

    Levine B F 1973 Phys. Rev. B 7 2591

    [19]

    Levine B F 1973 J. Chem. Phys. 59 1463

    [20]

    Zhang S Y 1991 Chin. J. Chem. Phys. 4 109 (in Chinese) [张思远 1991 化学物理学报 4 109]

    [21]

    Zhang S Y 2005 Dielectric Theory of Chemical Bond in Complex Crystals and Its Application (Beijing: Science Press) p25 (in Chinese) [张思远 2005 复杂晶体化学键的介电理论及其应用 (北京: 科学出版社) 第25页]

    [22]

    Zhang S Y, Xue D F 2000 J. Grad. Sch. Acad. Sin. 17 36 (in Chinese) [张思远, 薛冬峰 2000 中国科学院研究生院学报 17 36]

    [23]

    Gao F M, Gao L H 2011 J. Yanshan Univ. 35 189 (in Chinese) [高发明, 高丽华 2011 燕山大学学报 35 189]

    [24]

    Gao F M 2004 Phys. Rev. B 69 094113

    [25]

    Li S C 2011 Mater. Sci. Forum 689 245

    [26]

    Brown I D, Altermatt D 1985 Acta Crystallogr. B: Struct. Sci. 41 244

    [27]

    Schwartz M 2012 Principles of Electrodynamics (New York: Dover Publications) p45

    [28]

    Irie H, Miyayama M, Kudo T 2001 J. Appl. Phys. 90 4089

    [29]

    Newnham R E, Wolfe R W, Dorrian J F 1971 Mater. Res. Bull. 6 1029

    [30]

    Goto T, Noguchi Y, Soga M, Miyayama M 2005 Mater. Res. Bull. 40 1044

    [31]

    Amorn H, Bdikin I K, Kholkin A L, Costa M E V 2006 Phys. Solid State 48 537

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究. 物理学报, 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [2] 邸淑红, 张阳, 杨会静, 伞星原, 刘会媛, 张素恒, 李繁麟, 太军君, 周春丽. 铷原子簇自发磁矩的实验观测及理论分析. 物理学报, 2021, 70(12): 122101. doi: 10.7498/aps.70.20210031
    [3] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [4] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射. 物理学报, 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [5] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体环境下二能级原子自发辐射场及频谱的特性. 物理学报, 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [6] 吴孔平, 齐剑, 彭波, 汤琨, 叶建东, 朱顺明, 顾书林. 第一性原理的广义梯度近似+U方法的纤锌矿Zn1-xMgxO极化特性与Zn0.75Mg0.25O/ZnO 界面能带偏差研究. 物理学报, 2015, 64(18): 187304. doi: 10.7498/aps.64.187304
    [7] 邢容, 谢双媛, 许静平, 羊亚平. 动态各向同性光子晶体中二能级原子的自发辐射. 物理学报, 2014, 63(9): 094205. doi: 10.7498/aps.63.094205
    [8] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应. 物理学报, 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [9] 牛海波, 陈光德, 伍叶龙, 耶红刚. 空位对纤锌矿型AlN自发极化影响的最大局域化Wannier函数方法研究. 物理学报, 2014, 63(16): 167701. doi: 10.7498/aps.63.167701
    [10] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠. 物理学报, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [11] 黄仙山, 谢双媛, 羊亚平. 各向异性光子晶体中Λ型原子的自发辐射性质. 物理学报, 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [12] 惠荣, 朱骏, 卢网平, 毛翔宇, 羌锋, 陈小兵. La掺杂诱发层状钙钛矿型铁电体弛豫性相变的介电研究. 物理学报, 2004, 53(1): 276-281. doi: 10.7498/aps.53.276
    [13] 孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈 波, 张 荣, 韩 平, 江若琏, 施 毅. AlGaN/GaN异质结构中极化与势垒层掺杂对二维电子气的影响. 物理学报, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [14] 孔月婵, 郑有炓, 储荣明, 顾书林. AlxGa1-xN/GaN异质结构中Al组分对二维电子气性质的影响. 物理学报, 2003, 52(7): 1756-1760. doi: 10.7498/aps.52.1756
    [15] 羊亚平, 林志新, 谢双媛, 冯伟国, 吴 翔. 光子晶体中三能级原子的自发发射. 物理学报, 1999, 48(4): 603-610. doi: 10.7498/aps.48.603
    [16] 钱祥忠. 液晶SmC*相自发极化的统计理论. 物理学报, 1997, 46(9): 1788-1795. doi: 10.7498/aps.46.1788
    [17] 郭常霖, 吴毓琴. 含铋层状结构铁电体PbBi4Ti4O15和SrBi4Ti4O15的X射线衍射数据的测定. 物理学报, 1980, 29(11): 1490-1496. doi: 10.7498/aps.29.1490
    [18] 李景德. ABO3型晶体中氧的电子自发极化. 物理学报, 1966, 22(2): 188-196. doi: 10.7498/aps.22.188
    [19] 霍裕平, 刘志远, 陈肖兰. 共价半导体的化学键模型. 物理学报, 1962, 18(12): 609-620. doi: 10.7498/aps.18.609
    [20] 陈式刚, 张绮香, 刘德森. 化学键对闪锌矿型晶体能带结构的影响. 物理学报, 1962, 18(10): 491-500. doi: 10.7498/aps.18.491
计量
  • 文章访问数:  7108
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-17
  • 修回日期:  2015-12-29
  • 刊出日期:  2016-03-05

/

返回文章
返回