搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于节块展开法的Jacobian-Free Newton Krylov联立求解物理-热工耦合问题

周夏峰 李富 郭炯

引用本文:
Citation:

基于节块展开法的Jacobian-Free Newton Krylov联立求解物理-热工耦合问题

周夏峰, 李富, 郭炯

Jacobian-Free Newton-Krylov based on nodal expansion method for neutronic-thermal hydraulic coupling problem

Zhou Xia-Feng, Li Fu, Guo Jiong
PDF
导出引用
  • 目前反应堆物理热工耦合程序通常采用固定点迭代思路, 这可能导致部分工况收敛速度慢, 甚至出现不收敛的现象, 严重影响了计算效率. 基于此, 本文将高效的粗网节块展开法(NEM)与Jacobian-Free Newton-Krylov (JFNK)方法结合, 成功地开发出了一套新方法NEM_JFNK, 实现了联立求解物理热工耦合问题. 首先将NEM推广到热工问题的求解, 之后使用NEM来离散物理-热工耦合问题的所有控制方程, 使得所有变量都能在粗网格下进行离散, 从而大大减小求解问题的规模; 其次将NEM离散后的方程经过某些特殊的处理, 成功地嵌入JFNK的计算框架, 最终开发出了基于线性预处理的NEM_JFNK, 即LP_NEM_JFNK. 此外, 为了充分利用原有的迭代程序, 避免JFNK残差方程的重新建立, 本文还开发了无需重构残差方程的NEM_JFNK, 即NRC_NEM_JFNK, 并实现黑箱耦合. 文中以一维中子-热工模型为例, 给出LP_NEM_JFNK和NRC_NEM_JFNK数学模型, 并对计算结果进行分析. 结果表明:新方法无论是收敛速度还是计算效率都具有明显优势.
    The traditional fixed-point iteration method is typically used for neutronics/thermal-hydralics coupling problems in most nuclear safety analysis codes. But the fixed-point iteration method has a tendency to fail to be used in computing the coupling problems due to slow convergence rate in some cases and even no convergence, and thus resulting in a limited efficiency, especially for the tight-coupling and fast-transient problems. In addition, for the reactor thermal-hydraulic calculation, the traditional finite difference or volume method (FDM or FVM) is used. However, both FDM and FVM require fine mesh size to achieve the desired precision and thus also result in a limited efficiency for the large scale problems. In this paper, to ensure the accuracy, efficiency and convergence for large-scale and complicated coupling problems, the new methods-NEM_JFNK are successfully developed to simultaneously solve the neutronics/thermal-hydralics coupling problems by combining the advantage of the efficient coarse nodal expansion method (NEM) and Jacobian-Free Newton-Krylov method (JFNK). The NEM has been widely used in the reactor physics analysis due to its high efficiency and accuracy in the reactor physics analysis, and it has proved to be superior to FDM and FVM. To improve the efficiency and accuracy for the large scale problems, the NEM is first extended to thermal hydraulic problems from the reactor physics calculation. Then all the governing equations of the neutronics/thermal-hydralics coupling problems can be discretized by the NEM and all the variables can be solved on the coarse meshes so that the size of coupling problems is greatly reduced. To ensure the high accuracy for the coupling problems on the coarse meshes, the high-order coefficients in NEM are successfully transferred between the coupling terms by our research. After that, to ensure the convergence of complicated coupling problems, JFNK based on the NEMs needs to be developed. However, the researches of JFNK based on the NEM in reactor analysis are less and the existing JFNK methods are mostly based on FVM or FDM or the finite element method. In this paper, the NEM discretization equations are successfully integrated into the framework of JFNK through the special treatment and the NEM_JFNK with linear-based preconditioner named LP_NEM_JFNK is also successfully developed. In addition, to take advantage of the existing code and avoid the construction of residual formulations, the non-residual construction NEM_JFNK named NRC_NEM_JFNK is presented and the black-box coupling method is achieved by NRC_NEM_JFNK so that the existing codes only need the simple modification to achieve the combination of the NEM and JFNK. Numerical results show LP_NEM_JFNK and NRC_NEM_JFNK outperform traditional fixed-point iteration method in the sense of convergence rate and efficiency. Further studies are needed to extend the NEM_JFNK method to the multi-dimensional neutronic/thermal hydraulic coupling problems in the high temperature gas-cooled reactor.
      通信作者: 周夏峰, zhou-xf11@mails.tsinghua.edu.cn
    • 基金项目: 国家科技重大专项(批准号: ZX06901)、国家自然科学基金(批准号: 11375099)和国家自然科学基金青年科学基金(批准号: 11505102)资助的课题.
      Corresponding author: Zhou Xia-Feng, zhou-xf11@mails.tsinghua.edu.cn
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. ZX06901), the National Natural Science Foundation of China (Grant No. 11375099), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11505102).
    [1]

    Ivanov K, Avramova M 2007 Ann. Nucl. Energ. 34 501

    [2]

    Yin P F, Zhang R, Xiong J T 2013 Acta Phys. Sin. 62 018102 (in Chinese) [殷鹏飞, 张蓉, 熊江涛 2013 物理学报 62 018102]

    [3]

    Nie T, Liu W Q 2012 Acta Phys. Sin. 61 184401 (in Chinese) [聂涛, 刘伟强 2012 物理学报 61 184401]

    [4]

    Hooper R, Hopkins M, Pawlowski R, Carnes B, Harry K. M 2010 Final Report on LDRD Project: Coupling Strategies for Multi-Physics Applications (New Mexico: Sandia National Laboratories) p11

    [5]

    Lawrence R D 1986 Prog. Nucl. Energ. 17 271

    [6]

    Zhou X F, Guo J, Li F 2015 Nucl. Eng. Des. 295 567

    [7]

    Knoll D, Keyes D 2004 J. Comput. Phys. 193 357

    [8]

    Wang Y, Wu W F, Fan Z 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展 2014 物理学报 63 154303]

    [9]

    Zhang H 2015 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [张汉 2015 博士学位论文 (北京: 清华大学)]

    [10]

    Gill D F 2009 Ph. D. Dissertation (Pennsylvania: Pennsylvania State University)

    [11]

    Zhou X F, Guo J, Li F 2016 Ann. Nucl. Energ. 88 118

    [12]

    Brown P N, Saad Y 2004 SIAM J. Sci. Comput. 193 357

    [13]

    Herman B Jacobian-Free Newton-Krylov Methods for Solving Nonlinear Neutronics/Thermal Hydraulic Equations https://github.com/bhermanmit/JFNK/blob/master/doc/writeup/JFNK_BRH.pdf [2015-09-14]

  • [1]

    Ivanov K, Avramova M 2007 Ann. Nucl. Energ. 34 501

    [2]

    Yin P F, Zhang R, Xiong J T 2013 Acta Phys. Sin. 62 018102 (in Chinese) [殷鹏飞, 张蓉, 熊江涛 2013 物理学报 62 018102]

    [3]

    Nie T, Liu W Q 2012 Acta Phys. Sin. 61 184401 (in Chinese) [聂涛, 刘伟强 2012 物理学报 61 184401]

    [4]

    Hooper R, Hopkins M, Pawlowski R, Carnes B, Harry K. M 2010 Final Report on LDRD Project: Coupling Strategies for Multi-Physics Applications (New Mexico: Sandia National Laboratories) p11

    [5]

    Lawrence R D 1986 Prog. Nucl. Energ. 17 271

    [6]

    Zhou X F, Guo J, Li F 2015 Nucl. Eng. Des. 295 567

    [7]

    Knoll D, Keyes D 2004 J. Comput. Phys. 193 357

    [8]

    Wang Y, Wu W F, Fan Z 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展 2014 物理学报 63 154303]

    [9]

    Zhang H 2015 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [张汉 2015 博士学位论文 (北京: 清华大学)]

    [10]

    Gill D F 2009 Ph. D. Dissertation (Pennsylvania: Pennsylvania State University)

    [11]

    Zhou X F, Guo J, Li F 2016 Ann. Nucl. Energ. 88 118

    [12]

    Brown P N, Saad Y 2004 SIAM J. Sci. Comput. 193 357

    [13]

    Herman B Jacobian-Free Newton-Krylov Methods for Solving Nonlinear Neutronics/Thermal Hydraulic Equations https://github.com/bhermanmit/JFNK/blob/master/doc/writeup/JFNK_BRH.pdf [2015-09-14]

  • [1] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题. 物理学报, 2023, 72(10): 100202. doi: 10.7498/aps.72.20222381
    [2] 马闯, 杨晓龙, 陈含爽, 张海峰. 基于平均场近似的BP算法求解随机块模型. 物理学报, 2021, 70(22): 228901. doi: 10.7498/aps.70.20210511
    [3] 李树, 李刚, 田东风, 邓力. 热辐射输运问题的隐式蒙特卡罗方法求解. 物理学报, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [4] 洪轲, 袁玲, 沈中华, 倪晓武. 利用Taylor展开法研究Lamb波在功能梯度材料中的传播特性. 物理学报, 2011, 60(10): 104303. doi: 10.7498/aps.60.104303
    [5] 程雪苹, 李金玉, 薛江蓉. 耦合KdV方程的约化及求解. 物理学报, 2011, 60(11): 110204. doi: 10.7498/aps.60.110204
    [6] 王静. 一个新的广义的Riccati方程有理展开法及其应用. 物理学报, 2010, 59(5): 2924-2931. doi: 10.7498/aps.59.2924
    [7] 李帮庆, 马玉兰, 徐美萍. (G'/G)展开法与高维非线性物理方程的新分形结构. 物理学报, 2010, 59(3): 1409-1415. doi: 10.7498/aps.59.1409
    [8] 梁立为, 李兴东, 李玉霞. 修正的F展开法和推广的KdV方程新的孤波解和精确解. 物理学报, 2009, 58(4): 2159-2163. doi: 10.7498/aps.58.2159
    [9] 何进春, 陈宗蕴, 黄念宁. 求解DNLS方程的反散射法的基本问题. 物理学报, 2009, 58(9): 6063-6067. doi: 10.7498/aps.58.6063
    [10] 马玉兰, 李帮庆, 孙践知. (G′/G)展开法在高维非线性物理方程中的新应用. 物理学报, 2009, 58(11): 7402-7409. doi: 10.7498/aps.58.7402
    [11] 白占武, 蒙高庆. 周期场时间导数Ornstein-Uhlenbeck噪声Fokker-Planck方程的小参数展开求解. 物理学报, 2008, 57(12): 7477-7481. doi: 10.7498/aps.57.7477
    [12] 吴国将, 张 苗, 史良马, 张文亮, 韩家骅. 扩展的Jacobi椭圆函数展开法和Zakharov方程组的新的精确周期解. 物理学报, 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [13] 吴国将, 韩家骅, 史良马, 张 苗. 一般变换下双Jacobi椭圆函数展开法及应用. 物理学报, 2006, 55(8): 3858-3863. doi: 10.7498/aps.55.3858
    [14] 石玉仁, 郭 鹏, 吕克璞, 段文山. 修正Jacobi椭圆函数展开法及其应用. 物理学报, 2004, 53(10): 3265-3269. doi: 10.7498/aps.53.3265
    [15] 张善卿, 李志斌. Jacobi 椭圆函数展开法的新应用. 物理学报, 2003, 52(5): 1066-1070. doi: 10.7498/aps.52.1066
    [16] 刘式适, 傅遵涛, 刘式达, 赵强. Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用. 物理学报, 2001, 50(11): 2068-2073. doi: 10.7498/aps.50.2068
    [17] 马大猷. 微扰法求解非线性驻波问题. 物理学报, 1996, 45(5): 796-800. doi: 10.7498/aps.45.796
    [18] 郭常霖, 黄月鸿. 求解低对称晶系晶胞参数的联立方程组法. 物理学报, 1981, 30(1): 124-131. doi: 10.7498/aps.30.124
    [19] 天线计算组. 天线振子作为初值问题求解. 物理学报, 1977, 26(4): 341-352. doi: 10.7498/aps.26.341
    [20] 黄祖洽. 无限长黑圆柱情形下密恩(Milne)问题的近似解(球谐函数展开法). 物理学报, 1957, 13(4): 257-270. doi: 10.7498/aps.13.257
计量
  • 文章访问数:  7761
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-14
  • 修回日期:  2016-01-10
  • 刊出日期:  2016-05-05

/

返回文章
返回