搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旗面周期摆动的实验研究

白夜 贾永霞 李存标 朱一丁

引用本文:
Citation:

旗面周期摆动的实验研究

白夜, 贾永霞, 李存标, 朱一丁

Experimental Study of a Periodical Flapping Flag

Bai Ye, Jia Yong-Xia, Li Cun-Biao, Zhu Yi-Ding
PDF
导出引用
  • 用实验方法研究了旗面周期摆动的运动过程, 采用改进的算法优化了粒子图像测速仪测量结果, 定量获得了水洞中摆动旗面的近壁流场信息. 通过选定旗面包络上的一个拐点, 将其振幅作为特征长度重新计算了旗面运动的Strouhal数. 多组实验结果中, 新的Strouhal 数均为0.21 左右, 这与相同Reynolds数下圆柱绕流的Strouhal数结果相近.
    A flag flapping in the wind is a classical fluid-structure interaction problem that concerns the interaction of elastic bodies with ambient fluid. The fluid-flag interaction can give rise to three self-sustained oscillation states under certain conditions, i.e., stretched-straight state, periodic state, and chaotic state. This paper reports an experimental study of a cantilevered polydimethylsiloxane (PDMS) flag flapping in a uniform flow at a periodic state. A heavy flag is well designed, with metal strips imbedded in the PDMS sheet. Immersing the elastic but self-sustaining flag into the water flow, we use the time-resolved particle image velocimetry (PIV) and visualization techniques to obtain the whole flow field around the midspan of the flapping flag. A unique PIV image processing method is used to measure the near-wall flow velocities around the flap-ping elastic flag at the periodic state. The image processing technique adopts a radon transform technology to determine the moving interface in the particle images. The interface velocity distribution is subsequently calculated. Artificial particles of uniform size with the interface velocity are added into the flag region. Therefore, the whole velocity field over a flapping period is accurately obtained, giving the basic data to analyze the flag flapping. It is found that there exists an inflection point in the envelope curve of the flag flapping. Based on the analyses of the flapping states and velocity fields, a unified flapping Strouhal number (St = 2Af/U) is proposed by choosing the amplitude of the inflection point as the characteristic length, which is similar to the Strouhal number of the flow around a circular cylinder over the same range of Reynolds number.
      通信作者: 贾永霞, yongxiajia@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 109103, 010062)、国家重点基础研究发展计划(批准号:2009CB724100)、群体项目(批准号: 10921202, 11221062, 11521091)和国家杰出青年科学基金(批准号: 10921202)资助的课题.
      Corresponding author: Jia Yong-Xia, yongxiajia@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 109103, 010062), the National Climb-B Plan, China (Grant No. 2009CB724100), the Group Project (Grant Nos. 10921202,11221062,11521091), and the National Natural Science Funds for Distinguished Young Scholar Group, China (Grant No. 10921202).
    [1]

    Eloy C, Schouveiler L 2011 J. Non-Linear Mech. 46 568

    [2]

    Hellum A, Mukherjee R, Hull A 2011 J. Fluid. Struct. 27 1086

    [3]

    Jafferis N T, Sturm J C 2013 J. Microelectromech. S. 22 495

    [4]

    Akcabay D T, Young Y L 2012 Phys. Fluids 24 054106

    [5]

    Doar O, Michelin S 2011 J. Fluid. Struct. 27 1357

    [6]

    Dunnmon J, Stanton S, Mann B, Dowell E 2011 J. Fluid. Struct. 27 1182

    [7]

    Giacomello A, Porfiri M 2011 Proceedings of SPIE 7976 797608

    [8]

    Michelin S, Doar O 2013 J. Fluid Mech. 714 489

    [9]

    Balint T, Lucey A 2005 J. Fluid. Struct. 20 893

    [10]

    Huang L 1995 J. Fluid. Struct. 9 127

    [11]

    Howell R, Lucey A, Carpenter P, Pitman M 2009 J. Fluid. Struct. 25 544

    [12]

    Zhang J, Childress S, Libchaber A, Shelley M 2000 Nature 408 835

    [13]

    Watanabe Y, Suzuki S, Sugihara M, Sueoka Y 2002 J. Fluid. Struct. 16 529

    [14]

    Shelley M, Vandenberghe N, Zhang J 2005 Phys. Rev. Lett. 94 302

    [15]

    Abderrahmane H A, Padoussis M P, Fayed M, Ng H D 2012 J. Wind Eng. Ind. Aerod. 107108 225

    [16]

    Eloy C, Lagrange R, Souilliez C, Schouveiler L 2008 J. Fluid Mech. 611 97

    [17]

    Eloy C, Souilliez C, Schouveiler L 2007 J. Fluid. Struct. 23 904

    [18]

    Huang W X, Sung H J 2010 J. Fluid Mech. 653 301

    [19]

    Yu Z, Wang Y, Shao X 2012 J. Sound Vib. 331 4448

    [20]

    Eloy C, Kofman N, Schouveiler L 2012 J. Fluid Mech. 691 583

    [21]

    Gibbs S C, Wang I, Dowell E 2012 J. Fluid. Struct. 34 68

    [22]

    Tang D, Yamamoto H, Dowell E 2003 J. Fluid. Struct. 17 225

    [23]

    Gao T G, Qin F H, Huang W X, Sun D J 2012 Chin. Phys. Lett. 29 094702

    [24]

    Michelin S, Smith S L, Glover B 2008 J. Fluid Mech. 617 1

    [25]

    Tang L, Padoussis M 2007 J. Sound Vib. 305 97

    [26]

    Tang L, Padoussis M 2008 J. Sound Vib. 310 512

    [27]

    Gordnier R E, Visbal M R 2002 J. Fluid. Struct. 16 497

    [28]

    Banerjee S, Connell B S H, Yue D K P 2015 J. Fluid Mech. 783 103

    [29]

    Gibbs S C, Fichera S, Zanotti A, Ricci S, Dowell E H 2014 J. Fluid. Struct. 48 507

    [30]

    Cao H C, Shi S X, Liu Y Z 2013 J. Exp. Fluid Mech. 27 58 (in Chinese) [曹洪才, 施圣贤, 刘应征 2013 实验流体力学 27 58]

    [31]

    Taylor G K, Nudds R L, Thomas A L R 2003 Nature 425 707

    [32]

    Shelley M J, Zhang J 2011 Annu. Rev. Fluid Mech. 43 449

    [33]

    Connell B S H, Yue D K P 2007 J. Fluid Mech. 581 33

    [34]

    Zhu Y D, Yuan H J, Zhang C H, Lee C B 2013 Meas. Sci. Technol. 24 125302

    [35]

    Lee C B, Su Z, Zhong H J, Chen S Y, Zhou M D, Wu J Z 2013 J. Fluid Mech. 732 77

    [36]

    Zhong H J, Lee C B, Su Z, Chen S Y, Zhou M D, Wu J Z 2013 J. Fluid Mech. 716 228

    [37]

    Shelley M J, Zhang J 2011 Annu. Rev. Fluid Mech. 43 449

    [38]

    Rohr J J, Fish F E 2007 J. Exp. Biol. 207 1633

    [39]

    Virot E, Amandolese X, Hemon P 2013 J. Fluid. Struct. 43 385

  • [1]

    Eloy C, Schouveiler L 2011 J. Non-Linear Mech. 46 568

    [2]

    Hellum A, Mukherjee R, Hull A 2011 J. Fluid. Struct. 27 1086

    [3]

    Jafferis N T, Sturm J C 2013 J. Microelectromech. S. 22 495

    [4]

    Akcabay D T, Young Y L 2012 Phys. Fluids 24 054106

    [5]

    Doar O, Michelin S 2011 J. Fluid. Struct. 27 1357

    [6]

    Dunnmon J, Stanton S, Mann B, Dowell E 2011 J. Fluid. Struct. 27 1182

    [7]

    Giacomello A, Porfiri M 2011 Proceedings of SPIE 7976 797608

    [8]

    Michelin S, Doar O 2013 J. Fluid Mech. 714 489

    [9]

    Balint T, Lucey A 2005 J. Fluid. Struct. 20 893

    [10]

    Huang L 1995 J. Fluid. Struct. 9 127

    [11]

    Howell R, Lucey A, Carpenter P, Pitman M 2009 J. Fluid. Struct. 25 544

    [12]

    Zhang J, Childress S, Libchaber A, Shelley M 2000 Nature 408 835

    [13]

    Watanabe Y, Suzuki S, Sugihara M, Sueoka Y 2002 J. Fluid. Struct. 16 529

    [14]

    Shelley M, Vandenberghe N, Zhang J 2005 Phys. Rev. Lett. 94 302

    [15]

    Abderrahmane H A, Padoussis M P, Fayed M, Ng H D 2012 J. Wind Eng. Ind. Aerod. 107108 225

    [16]

    Eloy C, Lagrange R, Souilliez C, Schouveiler L 2008 J. Fluid Mech. 611 97

    [17]

    Eloy C, Souilliez C, Schouveiler L 2007 J. Fluid. Struct. 23 904

    [18]

    Huang W X, Sung H J 2010 J. Fluid Mech. 653 301

    [19]

    Yu Z, Wang Y, Shao X 2012 J. Sound Vib. 331 4448

    [20]

    Eloy C, Kofman N, Schouveiler L 2012 J. Fluid Mech. 691 583

    [21]

    Gibbs S C, Wang I, Dowell E 2012 J. Fluid. Struct. 34 68

    [22]

    Tang D, Yamamoto H, Dowell E 2003 J. Fluid. Struct. 17 225

    [23]

    Gao T G, Qin F H, Huang W X, Sun D J 2012 Chin. Phys. Lett. 29 094702

    [24]

    Michelin S, Smith S L, Glover B 2008 J. Fluid Mech. 617 1

    [25]

    Tang L, Padoussis M 2007 J. Sound Vib. 305 97

    [26]

    Tang L, Padoussis M 2008 J. Sound Vib. 310 512

    [27]

    Gordnier R E, Visbal M R 2002 J. Fluid. Struct. 16 497

    [28]

    Banerjee S, Connell B S H, Yue D K P 2015 J. Fluid Mech. 783 103

    [29]

    Gibbs S C, Fichera S, Zanotti A, Ricci S, Dowell E H 2014 J. Fluid. Struct. 48 507

    [30]

    Cao H C, Shi S X, Liu Y Z 2013 J. Exp. Fluid Mech. 27 58 (in Chinese) [曹洪才, 施圣贤, 刘应征 2013 实验流体力学 27 58]

    [31]

    Taylor G K, Nudds R L, Thomas A L R 2003 Nature 425 707

    [32]

    Shelley M J, Zhang J 2011 Annu. Rev. Fluid Mech. 43 449

    [33]

    Connell B S H, Yue D K P 2007 J. Fluid Mech. 581 33

    [34]

    Zhu Y D, Yuan H J, Zhang C H, Lee C B 2013 Meas. Sci. Technol. 24 125302

    [35]

    Lee C B, Su Z, Zhong H J, Chen S Y, Zhou M D, Wu J Z 2013 J. Fluid Mech. 732 77

    [36]

    Zhong H J, Lee C B, Su Z, Chen S Y, Zhou M D, Wu J Z 2013 J. Fluid Mech. 716 228

    [37]

    Shelley M J, Zhang J 2011 Annu. Rev. Fluid Mech. 43 449

    [38]

    Rohr J J, Fish F E 2007 J. Exp. Biol. 207 1633

    [39]

    Virot E, Amandolese X, Hemon P 2013 J. Fluid. Struct. 43 385

  • [1] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数. 物理学报, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [2] 刘西川, 高太长, 刘磊, 翟东力. 基于粒子成像测速技术的降雪微物理特性研究. 物理学报, 2014, 63(19): 199201. doi: 10.7498/aps.63.199201
    [3] 刘西川, 高太长, 刘磊, 翟东力. 基于粒子成像测速技术的雨滴微物理特性研究. 物理学报, 2014, 63(2): 029203. doi: 10.7498/aps.63.029203
    [4] 杨杰, 李秀平, 王善进, 罗诗裕. 晶体摆动场辐射及其共振线附近的粒子运动行为. 物理学报, 2014, 63(8): 084104. doi: 10.7498/aps.63.084104
    [5] 喻松, 廖屏, 杨展予, 顾畹仪. 基于相干粒子数囚禁的电磁诱导光栅研究. 物理学报, 2013, 62(22): 224205. doi: 10.7498/aps.62.224205
    [6] 许莹, 李晋斌. 大粒子数二维硬核玻色子系统的量子蒙特卡罗模拟. 物理学报, 2012, 61(11): 110207. doi: 10.7498/aps.61.110207
    [7] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [8] 徐学翔, 袁洪春, 胡利云. 广义压缩粒子数态的非经典性质及其退相干. 物理学报, 2010, 59(7): 4661-4671. doi: 10.7498/aps.59.4661
    [9] 马宁, 王美山, 杨传路, 熊德林, 李小虎, 马晓光. 激光场强度对NO电子态粒子数布居影响的理论研究. 物理学报, 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [10] 常增光, 刘建成, 闫珂柱. 稳态V型和Λ型无粒子数反转激光增益的比较研究. 物理学报, 2008, 57(8): 4927-4932. doi: 10.7498/aps.57.4927
    [11] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [12] 陈 卓, 何 威, 蒲以康. 电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量. 物理学报, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [13] 周慧君, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 两个正交子能级的V型三能级系统的粒子数振荡特性. 物理学报, 2005, 54(2): 710-714. doi: 10.7498/aps.54.710
    [14] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应. 物理学报, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [15] 田淑芬, 樊锡君, 于洛平, J.S.BOW, R.W.CARPENTER, S.H.LIN. Al的能量吸收边缘和电子粒子数布居分析. 物理学报, 1999, 48(1): 140-147. doi: 10.7498/aps.48.140
    [16] 张汉壮, 高锦岳. 光场的空间横向效应对无粒子数反转光放大增益的影响. 物理学报, 1997, 46(12): 2330-2343. doi: 10.7498/aps.46.2330
    [17] 吴兴龙. 压缩粒子数态中振幅k次幂的压缩效应. 物理学报, 1994, 43(9): 1433-1440. doi: 10.7498/aps.43.1433
    [18] 谭维翰, 林尊琪, 余文炎, 顾敏, 陈文华, 郑玉霞, 王关志, 崔季秀, 程瑞华, 邓锡铭. 激光加热微管靶在软X射线波段观察很高的粒子数反转. 物理学报, 1988, 37(6): 989-995. doi: 10.7498/aps.37.989
    [19] 卫崇德, 罗小兰, 孟小凡, 姜王也, 叶菁. 超导铅膜非平衡相变中准粒子数的变化. 物理学报, 1983, 32(8): 1068-1072. doi: 10.7498/aps.32.1068
    [20] 高智. 利用射流混合获得分子气体的振动粒子数反转. 物理学报, 1975, 24(6): 407-418. doi: 10.7498/aps.24.407
计量
  • 文章访问数:  5230
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-31
  • 修回日期:  2016-02-26
  • 刊出日期:  2016-06-05

/

返回文章
返回