搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连铸低碳钢一次枝晶演变数值模拟及其受力分析

左晓静 孟祥宁 黄烁 王鑫 朱苗勇

引用本文:
Citation:

连铸低碳钢一次枝晶演变数值模拟及其受力分析

左晓静, 孟祥宁, 黄烁, 王鑫, 朱苗勇

Morphology simulation and mechanical analysis of primary dendrites for continuously cast low carbon steel

Zuo Xiao-Jing, Meng Xiang-Ning, Huang Shuo, Wang Xin, Zhu Miao-Yong
PDF
导出引用
  • 连铸坯初始凝固坯壳一次枝晶生长过程中受力冲击是导致其不均匀生长的重要原因. 本文采用元胞自动机法模拟连铸低碳钢(Fe-0.6 wt.%C)方坯初始凝固一次枝晶生长演变,并基于材料力学理论简化其为悬臂梁,计算实际浇铸熔体冲击下一次枝晶受力. 研究表明,2-10 K 过冷度范围,枝晶尖端溶质浓度随过冷度增加稳步提升,过冷度每升高2 K,尖端最大浓度增加约0.07%. 过冷度2-6 K范围,枝晶臂长度随过冷度上升显著增加;6-10 K范围,枝晶臂长度增幅稳定,生长速率约为0.08 mms-1. 枝晶间熔体流速0.13-0.33 ms-1时,过冷度增加使枝晶臂根部受力减轻,而恒定过冷度时根部受力则随一次枝晶长大持续增加. 过冷度低于6 K或一次枝晶生长1 s 后,枝晶臂根部弯曲应力均超过临界断裂强度,极易诱发断裂而形成初始缺陷.
    The initial growing dendrite is influenced significantly by the complicated solidification conditions in continuously oscillating mold. The uneven growth of dendrite causes some defects seen commonly such as internal crack, subsurface porosity, subsurface inclusion and other defects of continuous casting billet. The induced initial defects in mold can be expanded and propagated in the following process such as secondary cooling, straightening, rolling and other subsequent handling procedure and then evolve into serious defects that can restrict the development and the quality refinement of final steel products. The mechanical stress caused by mold oscillation and the melt flowing is a crucial factor that leads to the uneven microstructure growth of initial solidifying shell in continuous casting mold. In this work, we simulate the growth and the morphology evolution of primary dendrites in mold area by using the cellular automaton (CA) method in combination with the actual conditions for continuously cast low carbon billet (Fe-0.6 wt.%C). Further, the mechanical state of initial dendrite is analyzed by regarding primary dendrite as a cantilever beam and its mechanical stress is calculated by combining thermo-physical properties and flow rate of steel based on the principle of materials mechanics to shed light on the formation of initial defects formation in mold area of continuous casting process. The results show that the solute concentration of initial dendrite tip gradually increases with undercooling from 2 to 10 K, and the maximum concentration rises by 0.07% when the increment of undercooling is 2 K. The length of dendrite arm increases significantly with undercooling from 2 to 6 K. However, the length of dendrite arm remains steady in a stable growth rate of 0.08 mms-1 when the undercooling is enhanced from 6 to 10 K. The increase of undercooling reduces the bending stress at dendrite root when the flow rate of molten steel is improved from 0.13 to 0.33 ms-1, while the mechanical stress continuously increases with the growth of primary dendrite at a constant undercooling. The bending stress of dendrite root has a high possibility to exceed its critical fracture strength under the condition of undercooling below 6 K or dendrite grow up more than 1 s. The primary dendrite is likely to be fractured and form initial defects of billet.
      通信作者: 孟祥宁, mengxn@smm.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51004031)和中央高校基本科研业务费(批准号:N140205002)资助的课题.
      Corresponding author: Meng Xiang-Ning, mengxn@smm.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51004031) and the Fundamental Research Fund for the Central Universities, China (Grant No. N140205002).
    [1]

    Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin. 63 449 (in Chinese) [陈瑞, 许庆彦, 柳百成 2014 物理学报 63 449]

    [2]

    Dou K, Qing J S, Wang L, Zhang X F, Wang B, Liu Q, Dong H B 2014 Acta Metall. Sin. 50 1505 (in Chinese) [窦坤, 卿家胜, 王雷, 张晓峰, 王宝, 刘青, 董洪标 2014 金属学报 50 1505]

    [3]

    Li R, Shen H D, Feng C M, Pan H, Feng C N 2013 Acta Phys. Sin. 62 188106 (in Chinese) [李日, 沈焕弟, 冯长海, 潘红, 冯传宁 2013 物理学报 62 188106]

    [4]

    Chopra M A, Glicksman M E, Singh N B 1988 Metall. Mater. Trans. A 19 3087

    [5]

    Koss M B, Lacombe J C, Tennenhouse L A 1999 Metall. Mater. Trans. A 30 3177

    [6]

    Nastac L, Stefanescu D M 1996 Trans. Am. Found. Soc. 104 425

    [7]

    Han R H, Dong W C, Lu S P, Li D Z, Li Y Y 2014 Acta Phys. Sin. 63 228103 (in Chinese) [韩日宏, 董文超, 陆善平, 李殿中, 李依依 2014 物理学报 63 228103]

    [8]

    Hesselbarth H W, Göbel I R 1991 Acta Metall. Mater. 39 2135

    [9]

    Gandin C A, Desbiolies J L, Rappaz M 1999 Metall. Mater. Trans. A 30 3153

    [10]

    Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233

    [11]

    Rappaz M, Gandin C A 1993 Acta Metall. Mater. 41 345

    [12]

    Kermanpur A, Evans D G, Siddall R J 2004 J. Mater. Sci. 39 7175

    [13]

    Yamazaki M, Natsume Y, Harada H 2006 ISIJ Int. 46 903

    [14]

    Zhu M F, Hong C P 2001 ISIJ Int. 41 436

    [15]

    Nastac L 2012 Mater. Sci. Technol. 28 1006

    [16]

    Kundu S, Dutta M, Ganguly S, Chandra S 2004 Scr. Mater. 50 891

    [17]

    Lan Y J, Li D Z, Li Y Y 2004 Acta Mater. 52 1721

    [18]

    Qian M, Guo Z X 2004 Mater. Sci. Eng. A 365 180

    [19]

    Zheng Y X, Niu L S 2009 Comput. Mater. Sci. 46 443

    [20]

    Dahle A K, Arnberg L 1997 Acta Mater. 45 547

    [21]

    Dahle A K, Thevik H J, Arnberg L 1999 Metall. Mater. Trans. B 30 287

    [22]

    Pilling J, Hellawell A 1996 Metall. Mater. Trans. A 27 229

    [23]

    Meng X N, Lin R G, Yang J, Zuo X J, Zhu M Y 2015 J. Iron. Steel Res. Int. 22 1085

    [24]

    Zuo X J, Lin R G, Wang N, Yang J, Meng X N, Zhu M Y 2016 Steel Res. Int. 87 413

    [25]

    Lazaro B S, Doru M S 2003 Metall. Mater. Trans. A 34 367

    [26]

    Nastac L 1999 Acta Mater. 47 4253

    [27]

    Gaskell D R 1992 An Introduction to Transport Phenomena in Materials Engineering (New York: MacMillan Publishing Company) p125

    [28]

    Lipton J, Glicksman M E, Kurz W 1984 Mater. Sci. Eng. 65 57

    [29]

    Alizadeh M, Jahromi A J, Abouali O 2008 ISIJ Int. 48 161

    [30]

    Flemings M C 1991 Metall. Mater. Trans. B 22 269

    [31]

    Meng Y, Thomas B G 2003 Metall. Mater. Trans. B 34 685

    [32]

    Kubota J 1990 Sixth International Iron and Steel Congress Proceeding Nagoya, Japan, October 21-26, 1990 p356

  • [1]

    Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin. 63 449 (in Chinese) [陈瑞, 许庆彦, 柳百成 2014 物理学报 63 449]

    [2]

    Dou K, Qing J S, Wang L, Zhang X F, Wang B, Liu Q, Dong H B 2014 Acta Metall. Sin. 50 1505 (in Chinese) [窦坤, 卿家胜, 王雷, 张晓峰, 王宝, 刘青, 董洪标 2014 金属学报 50 1505]

    [3]

    Li R, Shen H D, Feng C M, Pan H, Feng C N 2013 Acta Phys. Sin. 62 188106 (in Chinese) [李日, 沈焕弟, 冯长海, 潘红, 冯传宁 2013 物理学报 62 188106]

    [4]

    Chopra M A, Glicksman M E, Singh N B 1988 Metall. Mater. Trans. A 19 3087

    [5]

    Koss M B, Lacombe J C, Tennenhouse L A 1999 Metall. Mater. Trans. A 30 3177

    [6]

    Nastac L, Stefanescu D M 1996 Trans. Am. Found. Soc. 104 425

    [7]

    Han R H, Dong W C, Lu S P, Li D Z, Li Y Y 2014 Acta Phys. Sin. 63 228103 (in Chinese) [韩日宏, 董文超, 陆善平, 李殿中, 李依依 2014 物理学报 63 228103]

    [8]

    Hesselbarth H W, Göbel I R 1991 Acta Metall. Mater. 39 2135

    [9]

    Gandin C A, Desbiolies J L, Rappaz M 1999 Metall. Mater. Trans. A 30 3153

    [10]

    Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233

    [11]

    Rappaz M, Gandin C A 1993 Acta Metall. Mater. 41 345

    [12]

    Kermanpur A, Evans D G, Siddall R J 2004 J. Mater. Sci. 39 7175

    [13]

    Yamazaki M, Natsume Y, Harada H 2006 ISIJ Int. 46 903

    [14]

    Zhu M F, Hong C P 2001 ISIJ Int. 41 436

    [15]

    Nastac L 2012 Mater. Sci. Technol. 28 1006

    [16]

    Kundu S, Dutta M, Ganguly S, Chandra S 2004 Scr. Mater. 50 891

    [17]

    Lan Y J, Li D Z, Li Y Y 2004 Acta Mater. 52 1721

    [18]

    Qian M, Guo Z X 2004 Mater. Sci. Eng. A 365 180

    [19]

    Zheng Y X, Niu L S 2009 Comput. Mater. Sci. 46 443

    [20]

    Dahle A K, Arnberg L 1997 Acta Mater. 45 547

    [21]

    Dahle A K, Thevik H J, Arnberg L 1999 Metall. Mater. Trans. B 30 287

    [22]

    Pilling J, Hellawell A 1996 Metall. Mater. Trans. A 27 229

    [23]

    Meng X N, Lin R G, Yang J, Zuo X J, Zhu M Y 2015 J. Iron. Steel Res. Int. 22 1085

    [24]

    Zuo X J, Lin R G, Wang N, Yang J, Meng X N, Zhu M Y 2016 Steel Res. Int. 87 413

    [25]

    Lazaro B S, Doru M S 2003 Metall. Mater. Trans. A 34 367

    [26]

    Nastac L 1999 Acta Mater. 47 4253

    [27]

    Gaskell D R 1992 An Introduction to Transport Phenomena in Materials Engineering (New York: MacMillan Publishing Company) p125

    [28]

    Lipton J, Glicksman M E, Kurz W 1984 Mater. Sci. Eng. 65 57

    [29]

    Alizadeh M, Jahromi A J, Abouali O 2008 ISIJ Int. 48 161

    [30]

    Flemings M C 1991 Metall. Mater. Trans. B 22 269

    [31]

    Meng Y, Thomas B G 2003 Metall. Mater. Trans. B 34 685

    [32]

    Kubota J 1990 Sixth International Iron and Steel Congress Proceeding Nagoya, Japan, October 21-26, 1990 p356

  • [1] 张士杰, 王颖明, 王琦, 李晨宇, 李日. 基于元胞自动机-格子玻尔兹曼模型的枝晶碰撞行为模拟. 物理学报, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [2] 梁龙, 焦阳. 微环境促进的侵袭性肿瘤生长的元胞自动机模拟. 物理学报, 2015, 64(5): 058706. doi: 10.7498/aps.64.058706
    [3] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [4] 杨晓芳, 茅威, 付强. 基于动态地场和元胞自动机的自行车流建模. 物理学报, 2013, 62(24): 240511. doi: 10.7498/aps.62.240511
    [5] 杨晓阔, 蔡理, 康强, 李政操, 陈祥叶, 赵晓辉. 磁性量子元胞自动机拐角结构的理论模拟和实验. 物理学报, 2012, 61(9): 097503. doi: 10.7498/aps.61.097503
    [6] 任刚, 陆丽丽, 王炜. 基于元胞自动机和复杂网络理论的双向行人流建模. 物理学报, 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [7] 石玉峰, 许庆彦, 柳百成. 基于改进元胞自动机模型的三元合金枝晶生长的数值模拟. 物理学报, 2012, 61(10): 108101. doi: 10.7498/aps.61.108101
    [8] 魏雷, 林鑫, 王猛, 黄卫东. 基于MeshTV界面重构算法的二元合金自由枝晶生长元胞自动机模型. 物理学报, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [9] 宋玉蓉, 蒋国平, 徐加刚. 一种基于元胞自动机的自适应网络病毒传播模型. 物理学报, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [10] 王福来. 一种基于误差快速扩散元胞自动机的加密技术. 物理学报, 2011, 60(6): 060501. doi: 10.7498/aps.60.060501
    [11] 吴孟武, 熊守美. 采用元胞自动机法模拟二元规则共晶生长. 物理学报, 2011, 60(5): 058103. doi: 10.7498/aps.60.058103
    [12] 宋玉蓉, 蒋国平. 基于一维元胞自动机的复杂网络恶意软件传播研究. 物理学报, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [13] 周金旺, 陈秀丽, 孔令江, 刘慕仁, 谭惠丽, 周建槐. 一种改进的多速双向行人流元胞自动机模型. 物理学报, 2009, 58(4): 2281-2285. doi: 10.7498/aps.58.2281
    [14] 康瑞, 彭莉娟, 杨凯. 考虑驾驶方式改变的一维元胞自动机交通流模型. 物理学报, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [15] 彭莉娟, 康瑞. 考虑驾驶员特性的一维元胞自动机交通流模型. 物理学报, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [16] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [17] 梅超群, 黄海军, 唐铁桥. 高速公路入匝控制的一个元胞自动机模型. 物理学报, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [18] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究. 物理学报, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型. 物理学报, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长. 物理学报, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
计量
  • 文章访问数:  5781
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-11
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-08-05

/

返回文章
返回