-
在二元合金元胞自动机模型的基础上,通过耦合多元合金热力学相平衡求解器PanEngine, 建立了三元合金改进的元胞自动机模型,可模拟初生相枝晶的生长过程. 模型考虑了曲率过冷和成分过冷对界面平衡溶质成分的影响,通过不同组元的无量纲溶质过饱和度方程和界面溶质守恒方程之间的耦合来求解界面生长速率,并通过PanEngine计算界面处的液相线温度. 采用本模型模拟了Al-7%Si-xMg三元合金自由枝晶的生长形态, 结果表明Mg含量的增加会抑制枝晶一次臂的生长和二次臂的产生.同时模拟了不同抽拉速度下 Al-7%Si-0.5%Mg合金柱状枝晶的竞争生长过程,随着抽拉速度的增大,柱状枝晶一次枝晶臂间距逐渐减小, 与Hunt理论模型符合较好.Based on the binary cellular automaton method, a modified cellular automaton model for ternary alloys is developed to simulate dendrite growth controlled by solutal effects and microsegregation in the low Peclet number regime by coupling PanEngine, which is a multicomponent thermodynamic and equilibrium calculation engine. The model can be used to calculate the interfacial equilibrium composition by considering the influence of Gibbs-Thomson effect induced curvature undercooling, and multicomponents contributed constitutional undercooling. Meanwhile, the growth velocity of interface is determined by solving the solute conservation equation simultaneously with dimensionless solute supersaturation equation for each alloying element. Moreover, equilibrium liquidus temperature and equilibrium solid concentration at the interface are derived by PanEngine. Free dendrite growth of Al-7%Si-xMg ternary alloys is simulated by the present model, which shows that the increase of solute Mg can suppress the growths of both primary and secondary dendrite arms. Meanwhile, constrained columnar dendrite growth of Al-7%Si-0.5%Mg with the increases of pulling velocity and constant thermal gradient during directional solidification is calculated. The results reveal the competitive growth of columnar dendrites, and demonstrate that the primary dendrite arm spacing would decrease as the pulling velocity increases, which accords well with the Hunt model.
-
Keywords:
- modified cellular automation /
- ternary alloys /
- dendrite growth
[1] Scheil E 1942 Z. Metallkd 34 70
[2] Brody H D, Flemings M C 1966 AIME Met. Soc. Trans. 236 615
[3] Clyne T W, Kurz W 1981 Metall. Mater. Trans. A 12 965
[4] Chen F Y, Jie W Q 2004 Acta Metall. Sin. 40 664 (in Chinese) [陈福义, 介万奇 2004 金属学报 40 664]
[5] Lipton J, Glicksman M, Kurz W 1984 Mater. Sci. Eng. 65 57
[6] Kurz W, Giovanola B, Trivedi R 1986 Acta Metall. 34 823
[7] Kurz W, Fisher D J 1981 Acta Metall. 29 11
[8] Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611
[9] Wheeler A A, Murrary B T, Schaefer R J 1993 Physica D 66 243
[10] Kobayashi H, Ode M, Kim S G, Kim W T, Suzuki T 2003 Scripta Mater. 48 689
[11] Suzuki T, Ode M, Kim S G, Kim W T 2002 J. Cryst. Growth 237-239 125
[12] Zhang R J, Jing T, Jie W Q, Liu B C 2006 Acta Mater. 54 2235
[13] Rappaz M, Gandin C A 1993 Acta Metall. 41 345
[14] Gandin C A, Rappaz M 1994 Acta Metall. 42 2233
[15] Nastac L 1999 Acta Mater. 47 4253
[16] Beltran S L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[17] Wang W, Lee P D, McLean M 2003 Acta Mater. 51 2971
[18] Liu Y, Xu Q Y, Liu B C 2006 Tsinghua Sci. Tech. 11 495
[19] Pan S Y, Zhu M F 2010 Acta Mater. 58 340
[20] Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A 2007 J. Phase Equilib. Diffus. 28 130
[21] Dai T, Zhu M F, Chen S L, Cao W S, Hong C P 2008 Acta Metall. Sin. 44 1175 (in Chinese) [戴挺, 朱鸣芳, 陈双林, 曹伟生, 洪俊杓 2008 金属学报 44 1175]
[22] Michelic S C, Thuswaldner J M, Bernhard C 2010 Acta Mater. 58 2738
[23] Rappaz M, Boettinger W J 1999 Acta Mater. 47 3205
[24] Trivedi R, Kurz W 1994 Int. Mater. Rev. 39 49
[25] Du Q, Jacot A 2005 Acta Mater. 53 3479
[26] Jie W Q, Fu H Z, Zhou Y H 2010 Mater. China 29 1 (in Chinese) [介万奇, 傅恒志, 周尧和 2010 中国材料进展 29 1]
-
[1] Scheil E 1942 Z. Metallkd 34 70
[2] Brody H D, Flemings M C 1966 AIME Met. Soc. Trans. 236 615
[3] Clyne T W, Kurz W 1981 Metall. Mater. Trans. A 12 965
[4] Chen F Y, Jie W Q 2004 Acta Metall. Sin. 40 664 (in Chinese) [陈福义, 介万奇 2004 金属学报 40 664]
[5] Lipton J, Glicksman M, Kurz W 1984 Mater. Sci. Eng. 65 57
[6] Kurz W, Giovanola B, Trivedi R 1986 Acta Metall. 34 823
[7] Kurz W, Fisher D J 1981 Acta Metall. 29 11
[8] Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611
[9] Wheeler A A, Murrary B T, Schaefer R J 1993 Physica D 66 243
[10] Kobayashi H, Ode M, Kim S G, Kim W T, Suzuki T 2003 Scripta Mater. 48 689
[11] Suzuki T, Ode M, Kim S G, Kim W T 2002 J. Cryst. Growth 237-239 125
[12] Zhang R J, Jing T, Jie W Q, Liu B C 2006 Acta Mater. 54 2235
[13] Rappaz M, Gandin C A 1993 Acta Metall. 41 345
[14] Gandin C A, Rappaz M 1994 Acta Metall. 42 2233
[15] Nastac L 1999 Acta Mater. 47 4253
[16] Beltran S L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[17] Wang W, Lee P D, McLean M 2003 Acta Mater. 51 2971
[18] Liu Y, Xu Q Y, Liu B C 2006 Tsinghua Sci. Tech. 11 495
[19] Pan S Y, Zhu M F 2010 Acta Mater. 58 340
[20] Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A 2007 J. Phase Equilib. Diffus. 28 130
[21] Dai T, Zhu M F, Chen S L, Cao W S, Hong C P 2008 Acta Metall. Sin. 44 1175 (in Chinese) [戴挺, 朱鸣芳, 陈双林, 曹伟生, 洪俊杓 2008 金属学报 44 1175]
[22] Michelic S C, Thuswaldner J M, Bernhard C 2010 Acta Mater. 58 2738
[23] Rappaz M, Boettinger W J 1999 Acta Mater. 47 3205
[24] Trivedi R, Kurz W 1994 Int. Mater. Rev. 39 49
[25] Du Q, Jacot A 2005 Acta Mater. 53 3479
[26] Jie W Q, Fu H Z, Zhou Y H 2010 Mater. China 29 1 (in Chinese) [介万奇, 傅恒志, 周尧和 2010 中国材料进展 29 1]
计量
- 文章访问数: 6481
- PDF下载量: 1090
- 被引次数: 0