搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变频正弦混沌神经网络及其应用

胡志强 李文静 乔俊飞

引用本文:
Citation:

变频正弦混沌神经网络及其应用

胡志强, 李文静, 乔俊飞

Frequency conversion sinusoidal chaotic neural network and its application

Hu Zhi-Qiang, Li Wen-Jing, Qiao Jun-Fei
PDF
导出引用
  • 针对暂态混沌神经网络全局寻优能力受限的问题,提出了一种基于脑电波生物机制的新型混沌神经网络模型变频正弦混沌神经网络.该模型将变频正弦函数和Sigmoid函数组合作为非单调激励函数,本文给出了该混沌神经元的倒分岔图及Lyapunov指数的时间演化图,分析了其动力学特性.进一步将该模型应用到非线性函数优化和组合优化问题上,并分析了参数的变化规律.仿真实验证明变频正弦混沌神经网络比暂态混沌神经网络及其他相关模型具有更好的全局寻优能力.
    The optimization performance of transiently chaotic neural network (TCNN) is affected by various factors such as chaotic characteristic, model parameters, and annealing function, and its capacity of global optimization is limited. It is demonstrated that the non-monotonic activation function can generate richer chaotic characteristic than the monotonic activation function in the TCNN model. Besides, the activation function involving neurobiological mechanism can not only reflect the rich brain activity in brain waves, but also enhance the non-linear dynamic characteristic, which may further improve the global optimization ability. Hence, a novel chaotic neuron model is proposed with the non-monotonic activation function based on the neurobiological mechanisms from the electroencephalogram. The electroencephalogram consists of five brain waves (i.e., , , , , and waves) which are defined by the quality and intensity of brain waves with different frequency bands ranging from 0.5 Hz to 100 Hz. The brain wave with a higher frequency and a lower amplitude represents a more active brain. Researches demonstrate that the five brain waves can be simplified into sinusoidal waves with different frequencies. Hence, a frequency conversion sinusoidal (FCS) function which has the consistent frequency range and features with brain waves is designed based on the above neurobiological mechanisms. Then a novel chaotic neuron model with non-monotonic activation function which is composed of the FCS function and sigmoid function, is proposed for richer chaotic dynamic characteristic. The reversed bifurcation and the Lyapunov exponent of the chaotic neuron are given and the dynamic system is analyzed, indicating that the proposed FCS neuron model owns richer chaotic dynamic characteristic than transiently chaotic neuron model due to its special non-monotonic activation function. Based on the neuron model, a novel transiently-chaotic neural networkfrequency conversion sinusoidal chaotic neural network (FCSCNN) is constructed and the basis of model parameter selection is provided as well. To validate the effectiveness of the proposed model, the FCSCNN is applied to nonlinear function optimization and 10-city, 30-city, 75-city traveling salesman problem. The experimental results show that 1) the FCSCNN has a good performance under the condition of moderate a, smaller cA(0) and 2(0); 2) on the basis of the appropriate model parameters, the FCSCNN has better global optimization ability and optimization accuracy than Hopfield neural network, TCNN, improved-TCNN due to its richer chaotic characteristic in complicated combinational optimization problem, especially in middle and large scale problem.
      通信作者: 胡志强, zacharyhu33@163.com
    • 基金项目: 国家自然科学基金重点项目(批准号:61533002)、国家杰出青年科学基金(批准号:61225016)、国家自然科学基金青年科学基金(批准号:61603009)、中国博士后科学基金(批准号:2015M570910)、朝阳区博士后研究基金(批准号:2015ZZ-6)和北京工业大学基础研究基金(批准号:002000514315501)资助的课题.
      Corresponding author: Hu Zhi-Qiang, zacharyhu33@163.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61533002), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225016), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61603009), the China Postdoctoral Science Foundation (Grant No. 2015M570910), the ChaoYang District Postdoctoral Research Foundation, China (Grant No. 2015ZZ-6), and the Basic Research Foundation Project of Beijing University of Technology, China (Grant No. 002000514315501).
    [1]

    Han G, Qiao J F, Han H G, Chai W 2014 J. Control Decis. 29 2085 (in Chinese) [韩广, 乔俊飞, 韩红桂, 柴伟 2014 控制与决策 29 2085]

    [2]

    Yu S J, Huan R S, Zhang J, Feng D 2014 Acta Phys. Sin. 63 060701 (in Chinese) [于舒娟, 宦如松, 张昀, 冯迪 2014 物理学报 63 060701]

    [3]

    Aihara K, Takabe T, Toyoda M 1990 Phys. Lett. A 144 333

    [4]

    Chen L N, Aihara K 1995 Neural Networks 8 6

    [5]

    Shuai J W, Chen Z X, Liu R T, Wu B X 1996 Phys. Lett. A 221 311

    [6]

    Potapov A, Ali M K 2000 Phys. Lett. A 277 310

    [7]

    Xiu C B, Liu X D, Zhang Y H, Tang Y Y 2005 Acta Electron. Sin. 33 868 (in Chinese) [修春波, 刘向东, 张宇河, 唐运虞 2005 电子学报 33 868]

    [8]

    Xu Y Q, Sun M 2008 Control Theory A 25 574 (in Chinese) [徐耀群, 孙明 2008 控制理论与应用 25 574]

    [9]

    Yi Z, Xu G J, Qin X Z, Jia Z H 2011 Proc. Eng. 24 479

    [10]

    Xu Y Q, Xu N, Liu L J 2012 Appl. Mech. Mater. 151 532

    [11]

    Zhang J H, Xu Y Q 2009 Nat. Sci. 1 204

    [12]

    Zhang Q H Y, Xie X P, Zhu P, Chen H P, He G G 2014 Commun. Nonlinear Sci. 19 2793

    [13]

    Zhang X D, Zhu P, Xie X P 2013 Acta Phys. Sin. 62 210506 (in Chinese) [张旭东, 朱萍, 谢小平, 何国光 2013 物理学报 62 210506]

    [14]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mec. 61 21

    [15]

    Mirzaei A, Safabakhsh R 2009 Appl. Soft. Comput. 9 863

    [16]

    Qin K 2010 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [秦科 2010 博士学位论文 (成都: 电子科技大学)]

    [17]

    Zhao L, Sun M, Cheng J H, Xu Y Q 2009 IEEE Trans. Neural Networks 20 735

    [18]

    Liu X D, Xiu C B 2007 Neurocomputing 70 2561

    [19]

    Kwok T, Smith K A 1999 IEEE Trans. Neural Networks 10 978

  • [1]

    Han G, Qiao J F, Han H G, Chai W 2014 J. Control Decis. 29 2085 (in Chinese) [韩广, 乔俊飞, 韩红桂, 柴伟 2014 控制与决策 29 2085]

    [2]

    Yu S J, Huan R S, Zhang J, Feng D 2014 Acta Phys. Sin. 63 060701 (in Chinese) [于舒娟, 宦如松, 张昀, 冯迪 2014 物理学报 63 060701]

    [3]

    Aihara K, Takabe T, Toyoda M 1990 Phys. Lett. A 144 333

    [4]

    Chen L N, Aihara K 1995 Neural Networks 8 6

    [5]

    Shuai J W, Chen Z X, Liu R T, Wu B X 1996 Phys. Lett. A 221 311

    [6]

    Potapov A, Ali M K 2000 Phys. Lett. A 277 310

    [7]

    Xiu C B, Liu X D, Zhang Y H, Tang Y Y 2005 Acta Electron. Sin. 33 868 (in Chinese) [修春波, 刘向东, 张宇河, 唐运虞 2005 电子学报 33 868]

    [8]

    Xu Y Q, Sun M 2008 Control Theory A 25 574 (in Chinese) [徐耀群, 孙明 2008 控制理论与应用 25 574]

    [9]

    Yi Z, Xu G J, Qin X Z, Jia Z H 2011 Proc. Eng. 24 479

    [10]

    Xu Y Q, Xu N, Liu L J 2012 Appl. Mech. Mater. 151 532

    [11]

    Zhang J H, Xu Y Q 2009 Nat. Sci. 1 204

    [12]

    Zhang Q H Y, Xie X P, Zhu P, Chen H P, He G G 2014 Commun. Nonlinear Sci. 19 2793

    [13]

    Zhang X D, Zhu P, Xie X P 2013 Acta Phys. Sin. 62 210506 (in Chinese) [张旭东, 朱萍, 谢小平, 何国光 2013 物理学报 62 210506]

    [14]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mec. 61 21

    [15]

    Mirzaei A, Safabakhsh R 2009 Appl. Soft. Comput. 9 863

    [16]

    Qin K 2010 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [秦科 2010 博士学位论文 (成都: 电子科技大学)]

    [17]

    Zhao L, Sun M, Cheng J H, Xu Y Q 2009 IEEE Trans. Neural Networks 20 735

    [18]

    Liu X D, Xiu C B 2007 Neurocomputing 70 2561

    [19]

    Kwok T, Smith K A 1999 IEEE Trans. Neural Networks 10 978

  • [1] 李茹依, 王光义, 董玉姣, 周玮. 多频正弦混沌细胞神经网络及其复杂动力学特性. 物理学报, 2020, 69(24): 240501. doi: 10.7498/aps.69.20200725
    [2] 李瑞国, 张宏立, 范文慧, 王雅. 基于改进教学优化算法的Hermite正交基神经网络混沌时间序列预测. 物理学报, 2015, 64(20): 200506. doi: 10.7498/aps.64.200506
    [3] 杨剑, 陈书燊, 皇甫浩然, 梁佩鹏, 钟宁. 静息态脑电信号动态功能连接分析. 物理学报, 2015, 64(5): 058701. doi: 10.7498/aps.64.058701
    [4] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析. 物理学报, 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [5] 侯凤贞, 戴加飞, 刘新峰, 黄晓林. 基于网络连接度指标的脑梗死患者脑电信号相同步分析. 物理学报, 2014, 63(4): 040506. doi: 10.7498/aps.63.040506
    [6] 于舒娟, 宦如松, 张昀, 冯迪. 基于混沌神经网络的盲检测改进新算法. 物理学报, 2014, 63(6): 060701. doi: 10.7498/aps.63.060701
    [7] 张旭东, 朱萍, 谢小平, 何国光. 混沌神经网络的动态阈值控制. 物理学报, 2013, 62(21): 210506. doi: 10.7498/aps.62.210506
    [8] 李凌, 金贞兰, 李斌. 基于因子分析方法的相位同步脑电源的时-空动力学分析. 物理学报, 2011, 60(4): 048703. doi: 10.7498/aps.60.048703
    [9] 马千里, 卞春华, 王俊. 脑电信号的标度分析及其在睡眠状态区分中的应用. 物理学报, 2010, 59(7): 4480-4484. doi: 10.7498/aps.59.4480
    [10] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [11] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [12] 楼旭阳, 崔宝同. 混沌时滞神经网络系统的反同步. 物理学报, 2008, 57(4): 2060-2067. doi: 10.7498/aps.57.2060
    [13] 行鸿彦, 徐 伟. 混沌背景中微弱信号检测的神经网络方法. 物理学报, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [14] 方小玲, 姜宗来. 基于脑电图的大脑功能性网络分析. 物理学报, 2007, 56(12): 7330-7338. doi: 10.7498/aps.56.7330
    [15] 何国光, 朱 萍, 陈宏平, 曹志彤. 混沌神经网络的延时反馈控制研究. 物理学报, 2006, 55(3): 1040-1048. doi: 10.7498/aps.55.1040
    [16] 王占山, 张化光, 王智良. 一类混沌神经网络的全局同步. 物理学报, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [17] 刘光杰, 单 梁, 戴跃伟, 孙金生, 王执铨. 基于混沌神经网络的单向Hash函数. 物理学报, 2006, 55(11): 5688-5693. doi: 10.7498/aps.55.5688
    [18] 于灵慧, 房建成. 混沌神经网络逆控制的同步及其在保密通信系统中的应用. 物理学报, 2005, 54(9): 4012-4018. doi: 10.7498/aps.54.4012
    [19] 任海鹏, 刘丁. 混沌的模糊神经网络逆系统控制. 物理学报, 2002, 51(5): 982-987. doi: 10.7498/aps.51.982
    [20] 何国光, 曹志彤. 混沌神经网络的控制. 物理学报, 2001, 50(11): 2103-2107. doi: 10.7498/aps.50.2103
计量
  • 文章访问数:  6092
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-04
  • 修回日期:  2017-02-07
  • 刊出日期:  2017-05-05

/

返回文章
返回