搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限温度下一维Hubbard模型的化学势泛函理论研究

陆展鹏 魏兴波 刘天帅 陈阿海 高先龙

引用本文:
Citation:

有限温度下一维Hubbard模型的化学势泛函理论研究

陆展鹏, 魏兴波, 刘天帅, 陈阿海, 高先龙

Chemical potential-functional-theory about the properties of one-dimensional Hubbard model at finite temperature

Lu Zhan-Peng, Wei Xing-Bo, Liu Tian-Shuai, Chen A-Hai, Gao Xian-Long
PDF
导出引用
  • 通过数值方法求解了有限温度下一维均匀Hubbard模型的热力学Bethe-ansatz方程组,得到了在给定温度和相互作用强度情况下,比热c、磁化率和压缩比随化学势的变化图像.基于有限温度下一维均匀Hubbard模型的精确解,利用化学势()-泛函理论研究了一维谐振势下的非均匀Hubbard模型,给出了金属态和Mott绝缘态下不同温度情况时局域粒子密度ni和局域压缩比i随格点的变化情况.
    In this paper, we numerically solve the thermodynamic Bethe-ansatz coupled equations for a one-dimensional Hubbard model at finite temperature and obtain the second order thermodynamics properties, such as the specific heat, compressibility, and susceptibility. We find that these three quantities could embody the phase transitions of the system, from the vacuum state to the metallic state, from the metallic state to the Mott-insulating phase, from the Mott-insulating phase to the metallic state, and from the metallic state to the band-insulating phase. With the increase of temperature, the thermal fluctuation overwhelms the quantum fluctuations and the phase transition points disappear due to the destruction of the Mott-insulating phase. But in the case of the strong interaction strength, the Mott-insulating phase is robust, embodying the compressibility. Furthermore, we study the thermodynamic properties of the inhomogeneous Hubbard model with trapping potential. Making use of the Bethe-ansatz results from the homogeneous Hubbard model, we construct the chemical potential-functional theory (-BALDA) for the inhomogeneous Hubbard model instead of the commonly used density-functional theory, in order to solve the in-convergence problem of the Kohn-Sham equation in the case of the divergence appearing in the exchange-correlation potential. We further point out a multi-dimensional bisection method which changes the Kohn-Shan equation into a problem of finding the fixed points. Through -BALDA we numerically solve the one-dimensional homogeneous Hubbard model of trapping potential. The density profile and the local compressibility are obtained. We find that at a given interaction strength, the metallic phase and the Mott-insulating phase are destroyed and the density profile becomes a Guassian distribution with increasing temperature. To the metallic phase, Friedel oscillation caused by quantum fluctuations is still visible at low temperature. With increasing temperature, Friedel oscillation will disappear. This situation reflects the fact that the thermal fluctuation overwhelms the quantum fluctuations. For the Mott-insulating phase, the Mott-insulating plateau is robust at a certain temperature and only the boundary of the Mott-insulating plateau is destroyed. With increasing temperature, the Mott insulating plateau will be destroyed. And the change of the local compressibility provides the information about such a change. So we conclude that the thermal fluctuation destroys the original quantum phase. Through our analysis, we find that the -BALDA can be used to study the finite temperature properties for the system of the exchange-correlation potential divergence with high efficiency.
      通信作者: 高先龙, gaoxl@zjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374266)、新世纪优秀人才支持计划和浙江省自然科学基金(批准号:Z15A050001)资助的课题.
      Corresponding author: Gao Xian-Long, gaoxl@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374266), the Program for New Century Excellent Talents in University, China, and the Natural Science Foundation of Zhejiang Province, China (Grant No. Z15A050001).
    [1]

    Wang Z C 2003 Thermodynamics Statistical Physics (Beijing: Higher Education Press) p300 (in Chinese) [汪志诚 1993 热力学和统计物理学 (北京: 高等教育出版社) 第300页]

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48

    [3]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [4]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [5]

    DeMarco B, Jin D S 1999 Science 285 1703

    [6]

    Feshbach H 1958 Ann. Phys. 5 357

    [7]

    Batchelor M T, Bortz M, Guan X W, Oelkers N 2005 Phys. Rev. A 72 061603

    [8]

    Pachos J K, Knight P L 2003 Phys. Rev. Lett. 91 107902

    [9]

    Tomonaga S 1950 Prog. Theo. Phys. 5 544

    [10]

    Luttinger J M 1963 J. Math. Phys. 4 1154

    [11]

    Gao X L 2010 Phys. Rev. B 81 104306

    [12]

    Bethe H 1931 Z. Phys. 71 205

    [13]

    Lieb E H, Liniger W 1963 Phys. Rev. 130 1605

    [14]

    Yang C N 1967 Phys. Rev. Lett. 19 1312

    [15]

    Gaudin M 1967 Phys. Lett. A 24 55

    [16]

    Lieb E H, Wu F Y 1968 Phys. Rev. Lett. 20 1445

    [17]

    Hu H, Gao X L, Liu X J 2014 Phys. Rev. A 90 013622

    [18]

    Lee J Y, Guan X W, Sakai K, Batchelor M T 2012 Phys. Rev. B 85 085414

    [19]

    Guan X W, Batchelor M T, Lee C 2013 Rev. Mod. Phys. 85 1633

    [20]

    Yang C N, Yang C P 1969 J. Math. Phys. 10 1115

    [21]

    Takahashi M 1969 Prog. Theo. Phys. 42 1098

    [22]

    Takahashi M 1972 Prog. Theo. Phys. 47 69

    [23]

    Batchelor M T, Guan X W 2006 Phys. Rev. B 74 195121

    [24]

    Batchelor M T, Guan X W, Oelkers N 2006 Phys. Rev. Lett. 96 210402

    [25]

    Guan X W, Batchelor M T, Lee C, Bortz M 2007 Phys. Rev. B 76 085120

    [26]

    Jiang Y Z, Chen Y Y, Guan X W 2015 Chin. Phys. B 24 050311

    [27]

    Kuhn C C N, Guan X W, Foerster A, Batchelor M T 2012 Phys. Rev. A 86 011605

    [28]

    Guan X W, Lee J Y, Batchelor M T, Yin X G, Chen S 2010 Phys. Rev. A 82 021606

    [29]

    Gao X L, Chen A H, Tokatly I V, Kurth S 2012 Phys. Rev. B 86 235139

    [30]

    Gao X L 2012 J. Phys. B 45 225304

    [31]

    Gao X L, Asgari R 2008 Phys. Rev. A 77 033604

    [32]

    Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S, Machida M 2010 Phys. Rev. B 82 014202

    [33]

    Campo V L 2015 Phys. Rev. A 92 013614

    [34]

    Gao X L, Polini M, Rainis D, Tosi M P, Vignale G 2008 Phys. Rev. Lett. 101 206402

    [35]

    Li W, Gao X L, Kollath C, Polini M 2008 Phys. Rev. B 78 195109

    [36]

    Takahashi M, Shiroishi M 2002 Phys. Rev. B 65 165104

    [37]

    Ying Z J, Brosco V, Lorenzana J 2014 Phys. Rev. B 89 205130

    [38]

    Wang C J, Chen A H, Gao X L 2012 Acta Phys. Sin. 61 127501 (in Chinese) [王婵娟, 陈阿海, 高先龙 2012 物理学报 61 127501]

  • [1]

    Wang Z C 2003 Thermodynamics Statistical Physics (Beijing: Higher Education Press) p300 (in Chinese) [汪志诚 1993 热力学和统计物理学 (北京: 高等教育出版社) 第300页]

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48

    [3]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [4]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [5]

    DeMarco B, Jin D S 1999 Science 285 1703

    [6]

    Feshbach H 1958 Ann. Phys. 5 357

    [7]

    Batchelor M T, Bortz M, Guan X W, Oelkers N 2005 Phys. Rev. A 72 061603

    [8]

    Pachos J K, Knight P L 2003 Phys. Rev. Lett. 91 107902

    [9]

    Tomonaga S 1950 Prog. Theo. Phys. 5 544

    [10]

    Luttinger J M 1963 J. Math. Phys. 4 1154

    [11]

    Gao X L 2010 Phys. Rev. B 81 104306

    [12]

    Bethe H 1931 Z. Phys. 71 205

    [13]

    Lieb E H, Liniger W 1963 Phys. Rev. 130 1605

    [14]

    Yang C N 1967 Phys. Rev. Lett. 19 1312

    [15]

    Gaudin M 1967 Phys. Lett. A 24 55

    [16]

    Lieb E H, Wu F Y 1968 Phys. Rev. Lett. 20 1445

    [17]

    Hu H, Gao X L, Liu X J 2014 Phys. Rev. A 90 013622

    [18]

    Lee J Y, Guan X W, Sakai K, Batchelor M T 2012 Phys. Rev. B 85 085414

    [19]

    Guan X W, Batchelor M T, Lee C 2013 Rev. Mod. Phys. 85 1633

    [20]

    Yang C N, Yang C P 1969 J. Math. Phys. 10 1115

    [21]

    Takahashi M 1969 Prog. Theo. Phys. 42 1098

    [22]

    Takahashi M 1972 Prog. Theo. Phys. 47 69

    [23]

    Batchelor M T, Guan X W 2006 Phys. Rev. B 74 195121

    [24]

    Batchelor M T, Guan X W, Oelkers N 2006 Phys. Rev. Lett. 96 210402

    [25]

    Guan X W, Batchelor M T, Lee C, Bortz M 2007 Phys. Rev. B 76 085120

    [26]

    Jiang Y Z, Chen Y Y, Guan X W 2015 Chin. Phys. B 24 050311

    [27]

    Kuhn C C N, Guan X W, Foerster A, Batchelor M T 2012 Phys. Rev. A 86 011605

    [28]

    Guan X W, Lee J Y, Batchelor M T, Yin X G, Chen S 2010 Phys. Rev. A 82 021606

    [29]

    Gao X L, Chen A H, Tokatly I V, Kurth S 2012 Phys. Rev. B 86 235139

    [30]

    Gao X L 2012 J. Phys. B 45 225304

    [31]

    Gao X L, Asgari R 2008 Phys. Rev. A 77 033604

    [32]

    Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S, Machida M 2010 Phys. Rev. B 82 014202

    [33]

    Campo V L 2015 Phys. Rev. A 92 013614

    [34]

    Gao X L, Polini M, Rainis D, Tosi M P, Vignale G 2008 Phys. Rev. Lett. 101 206402

    [35]

    Li W, Gao X L, Kollath C, Polini M 2008 Phys. Rev. B 78 195109

    [36]

    Takahashi M, Shiroishi M 2002 Phys. Rev. B 65 165104

    [37]

    Ying Z J, Brosco V, Lorenzana J 2014 Phys. Rev. B 89 205130

    [38]

    Wang C J, Chen A H, Gao X L 2012 Acta Phys. Sin. 61 127501 (in Chinese) [王婵娟, 陈阿海, 高先龙 2012 物理学报 61 127501]

  • [1] 倪煜, 孙健, 全亚民, 罗东奇, 宋筠. 双轨道Hubbard模型的动力学平均场理论研究. 物理学报, 2022, 71(14): 1-11. doi: 10.7498/aps.71.20220286
    [2] 张若寒, 任慧莹, 何林. 二维材料平带的实现及其新奇量子物态. 物理学报, 2022, 71(12): 127302. doi: 10.7498/aps.71.20220225
    [3] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [4] 张龙, 翁征宇. Hubbard模型中的相位弦效应与交互Chern-Simons理论. 物理学报, 2015, 64(21): 217101. doi: 10.7498/aps.64.217101
    [5] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [6] 韩光, 孙诚, 吴迪, 陈伟荣. Invar合金的电子化学势均衡判据. 物理学报, 2014, 63(6): 068101. doi: 10.7498/aps.63.068101
    [7] 全亚民, 刘大勇, 邹良剑. 多轨道Hubbard模型的隶玻色子数值算法研究. 物理学报, 2012, 61(1): 017106. doi: 10.7498/aps.61.017106
    [8] 谢元栋. 一维Bose-Hubbard模型的孤子激发. 物理学报, 2012, 61(2): 023201. doi: 10.7498/aps.61.023201
    [9] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [10] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [11] 谈 斌, 李智勇, 李世忱. 非线性光纤环形镜的脉冲透过特性研究. 物理学报, 2004, 53(9): 3071-3076. doi: 10.7498/aps.53.3071
    [12] 何林, 邓永元. 超荧光辐射的热力学模型分析. 物理学报, 1995, 44(1): 80-86. doi: 10.7498/aps.44.80
    [13] 欧发. 耗散系统的准热力学模型. 物理学报, 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [14] 魏国柱. Hubbard-Hirsch模型中的电子相关效应. 物理学报, 1994, 43(11): 1828-1832. doi: 10.7498/aps.43.1828
    [15] 聂惠权, 魏国柱, 张开义. 扩展Hubbard模型的局域方法近似. 物理学报, 1988, 37(5): 720-726. doi: 10.7498/aps.37.720
    [16] 魏国柱, 聂惠权, 张开义. Hubbard模型的局域方法近似. 物理学报, 1988, 37(1): 87-94. doi: 10.7498/aps.37.87
    [17] 徐慧, 张开义. 一维扩展Hubbard模型热力学性质(Ⅰ)——U>0. 物理学报, 1985, 34(11): 1422-1432. doi: 10.7498/aps.34.1422
    [18] 徐慧, 张开义. 一维扩展Hubbard模型热力学性质(Ⅱ)——U<0. 物理学报, 1985, 34(11): 1433-1441. doi: 10.7498/aps.34.1433
    [19] 陈宗蕴, 周义昌, 黄念宁. 关于标量量子电动力学有效势的泛函算法. 物理学报, 1982, 31(5): 660-663. doi: 10.7498/aps.31.660
    [20] 钱俭. 关于混合气体输运理论中的积分方程组的研究. 物理学报, 1964, 20(10): 1061-1066. doi: 10.7498/aps.20.1061
计量
  • 文章访问数:  3352
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-07
  • 修回日期:  2017-03-26
  • 刊出日期:  2017-06-05

有限温度下一维Hubbard模型的化学势泛函理论研究

  • 1. 浙江师范大学物理系, 金华 321004
  • 通信作者: 高先龙, gaoxl@zjnu.edu.cn
    基金项目: 国家自然科学基金(批准号:11374266)、新世纪优秀人才支持计划和浙江省自然科学基金(批准号:Z15A050001)资助的课题.

摘要: 通过数值方法求解了有限温度下一维均匀Hubbard模型的热力学Bethe-ansatz方程组,得到了在给定温度和相互作用强度情况下,比热c、磁化率和压缩比随化学势的变化图像.基于有限温度下一维均匀Hubbard模型的精确解,利用化学势()-泛函理论研究了一维谐振势下的非均匀Hubbard模型,给出了金属态和Mott绝缘态下不同温度情况时局域粒子密度ni和局域压缩比i随格点的变化情况.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回