搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称旋转不变相干分布式非圆信号二维波达方向估计

代正亮 崔维嘉 巴斌 张彦奎

引用本文:
Citation:

对称旋转不变相干分布式非圆信号二维波达方向估计

代正亮, 崔维嘉, 巴斌, 张彦奎

Two-dimensional direction-of-arrival estimation of coherently distributed noncircular signals via symmetric shift invariance

Dai Zheng-Liang, Cui Wei-Jia, Ba Bin, Zhang Yan-Kui
PDF
导出引用
  • 在相干分布式非圆信号二维波达方向估计中,利用信号非圆特性可提升估计精度,但现有的低复杂度算法利用泰勒级数近似建立的旋转不变关系会引入额外误差.针对该问题,考虑中心对称的三维立体线阵,提出了一种基于对称旋转不变关系的二维波达方向估计算法.算法首先利用信号非圆特性建立了扩展阵列模型;然后证明了对于任意的中心对称阵列,相干分布源的确定性角信号分布函数矢量具有对称特性,利用此特性在三维立体线阵的三个子阵中分别建立了扩展广义方向矢量的对称旋转不变关系;基于此,通过无须搜索的多项式求根方式分别得到中心方位角和俯仰角估计;最后利用整个阵列广义方向矢量的对称旋转不变关系构造代价函数实现了参数匹配.理论分析和仿真实验表明,相比于现有的低复杂度算法,所提算法避免了泰勒级数近似引入的额外误差,以较小的复杂度代价获得了性能的较大提升.同时,所提算法能够实现三维空间全方位的角度估计.
    In practical applications such as mobile communication, radar and sonar, the effect of angular spread on the source energy can no longer be ignored due to multipath phenomena. Therefore, a spatially distributed source model is more realistic than the point source mode in these complex cases. A lot of direction-of-arrival (DOA) estimation methods for distributed sources have been published. Whereas researches concentrated on the complex circular signal case, the noncircular property of signal can be employed to further improve the estimation performance, which has received extensive attention recently. To date, several low-complexity DOA estimation algorithms for two-dimensional (2D) coherently distributed (CD) noncircular sources have been proposed. However, all these algorithms need obtain the approximate shift invariance relationship between the sub-arrays by applying the one-order Taylor series approximation to the generalized steering vectors, which may introduce additional errors and affect the estimation accuracy. In this paper, a novel 2D DOA estimation algorithm based on the symmetric shift invariance relationship is proposed using the centro-symmetric three-dimensional (3D) linear arrays. Firstly, the extended array model is established by exploiting the noncircularity of the signal. Then, it is proved that the deterministic angular distribution function vector of the CD source has a symmetrical property for arbitrary centro-symmetric array, based on which the symmetric shift invariance relationships of extended generalized steering vectors are established in the three sub-arrays of 3D linear arrays. On the premise of such relationships, the center azimuth and elevation DOAs are obtained by the polynomial rooting method without spectral peak searching. Finally, the cost function implementing the parameter matching is constructed by the symmetric shift invariance relationship of the generalized steering vector of the whole array. Theoretical analysis and simulation experiment show that compared with the existing low-complexity algorithms, the proposed algorithm avoids the additional errors introduced by the Taylor series approximation, which allows it to achieve higher estimation accuracy with the small complexity cost. Moreover, the proposed algorithm can achieve omnidirectional angle estimation in the three-dimensional space.
      通信作者: 代正亮, xinxidailiang@outlook.com
    • 基金项目: 国家自然科学基金(批准号:61401513)资助的课题.
      Corresponding author: Dai Zheng-Liang, xinxidailiang@outlook.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61401513).
    [1]

    Krim H, Viberg M 1996 IEEE Signal Process. Mag. 13 67

    [2]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 物理学报 62 144302]

    [3]

    Ba B, Liu G C, Li T, Fan Z, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese) [巴斌, 刘国春, 李韬, 范展, 林禹丞, 王瑜 2015 物理学报 64 078403]

    [4]

    Valaee S, Champagne B, Kabal P 1995 IEEE Trans. Signal Process. 43 2144

    [5]

    Zheng Z 2011 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology) (in Chinese) [郑植2011 博士学位论文 (成都:电子科技大学)]

    [6]

    Jiang H, Zhou J, Hisakazu K, Shao G 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 物理学报 63 048702]

    [7]

    Cao R Z, Gao F, Zhang X 2016 IEEE Trans. Signal Process. 64 1

    [8]

    Shahbazpanahi S, Valaee S, Bastani M H 2001 IEEE Trans. Signal Process. 49 2169

    [9]

    Hassanien A, Shahbazpanahi S, Gershman A B 2004 IEEE Trans. Signal Process. 52 280

    [10]

    Shahbazpanahi S, Valaee S, Gershman A B 2004 IEEE Trans. Signal Process. 52 592

    [11]

    Sieskul B T 2010 IEEE Trans. Vehicul. Technol. 59 1534

    [12]

    Yang X, Li G J, Zheng Z 2014 J. Electron. Informat. Technol. 36 164 (in Chinese) [杨学敏, 李广军, 郑植 2014 电子与信息学报 36 164]

    [13]

    Boujemaa H 2005 European Trans. Telecommun. 16 557

    [14]

    L T, Tan F, Gao H, Yang G 2016 Signal Process. 121 30

    [15]

    Lee J, Song I, Kwon H, Lee S R 2003 Signal Process. 83 1789

    [16]

    Guo X S, Wan Q, Yang W L, Lei X M 2009 Sci. China:Infor. Sci. 52 835

    [17]

    Zheng Z, Li G, Teng Y 2012 Wireless Pers. Commun.62 907

    [18]

    Yin J X, Wu Y, Wang D (in Chinese) [尹洁昕, 吴瑛, 王鼎 2014 通信学报 2 153]

    [19]

    Yang X, Li G, Zheng Z, Zhong L 2014 Wireless Pers. Commun. 78 1095

    [20]

    Yang X, Li G J, Zheng Z 2013 International Conference on Wireless Communication Signal Processing Hangzhou, China, October 24-26, 2013 p1

    [21]

    Eckhoff R 1998 IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Boston, Massachusetts, September 8-11, 1998 p471

    [22]

    Yang Z Q, Li S M (in Chinese) [杨正权, 李思敏 2001 通信学报 22 8]

    [23]

    Shi Y, Huang L, Qian C, So H C 2015 IEEE Trans. Aerosp. Electron. Syst. 51 1267

    [24]

    Yan F, Shen Y, Jin M, Qiao X 2016 J. Syst. Eng. Electron. 27 739

  • [1]

    Krim H, Viberg M 1996 IEEE Signal Process. Mag. 13 67

    [2]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 物理学报 62 144302]

    [3]

    Ba B, Liu G C, Li T, Fan Z, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese) [巴斌, 刘国春, 李韬, 范展, 林禹丞, 王瑜 2015 物理学报 64 078403]

    [4]

    Valaee S, Champagne B, Kabal P 1995 IEEE Trans. Signal Process. 43 2144

    [5]

    Zheng Z 2011 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology) (in Chinese) [郑植2011 博士学位论文 (成都:电子科技大学)]

    [6]

    Jiang H, Zhou J, Hisakazu K, Shao G 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 物理学报 63 048702]

    [7]

    Cao R Z, Gao F, Zhang X 2016 IEEE Trans. Signal Process. 64 1

    [8]

    Shahbazpanahi S, Valaee S, Bastani M H 2001 IEEE Trans. Signal Process. 49 2169

    [9]

    Hassanien A, Shahbazpanahi S, Gershman A B 2004 IEEE Trans. Signal Process. 52 280

    [10]

    Shahbazpanahi S, Valaee S, Gershman A B 2004 IEEE Trans. Signal Process. 52 592

    [11]

    Sieskul B T 2010 IEEE Trans. Vehicul. Technol. 59 1534

    [12]

    Yang X, Li G J, Zheng Z 2014 J. Electron. Informat. Technol. 36 164 (in Chinese) [杨学敏, 李广军, 郑植 2014 电子与信息学报 36 164]

    [13]

    Boujemaa H 2005 European Trans. Telecommun. 16 557

    [14]

    L T, Tan F, Gao H, Yang G 2016 Signal Process. 121 30

    [15]

    Lee J, Song I, Kwon H, Lee S R 2003 Signal Process. 83 1789

    [16]

    Guo X S, Wan Q, Yang W L, Lei X M 2009 Sci. China:Infor. Sci. 52 835

    [17]

    Zheng Z, Li G, Teng Y 2012 Wireless Pers. Commun.62 907

    [18]

    Yin J X, Wu Y, Wang D (in Chinese) [尹洁昕, 吴瑛, 王鼎 2014 通信学报 2 153]

    [19]

    Yang X, Li G, Zheng Z, Zhong L 2014 Wireless Pers. Commun. 78 1095

    [20]

    Yang X, Li G J, Zheng Z 2013 International Conference on Wireless Communication Signal Processing Hangzhou, China, October 24-26, 2013 p1

    [21]

    Eckhoff R 1998 IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Boston, Massachusetts, September 8-11, 1998 p471

    [22]

    Yang Z Q, Li S M (in Chinese) [杨正权, 李思敏 2001 通信学报 22 8]

    [23]

    Shi Y, Huang L, Qian C, So H C 2015 IEEE Trans. Aerosp. Electron. Syst. 51 1267

    [24]

    Yan F, Shen Y, Jin M, Qiao X 2016 J. Syst. Eng. Electron. 27 739

  • [1] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [2] 徐靖翔, 孔明, 许新科. 基于旋转不变技术信号参数估计的激光扫频干涉测量方法. 物理学报, 2021, 70(3): 034205. doi: 10.7498/aps.70.20201135
    [3] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [4] 包立平, 李文彦, 吴立群. 热传导系数跳跃的三维非Fourier温度场分布的奇摄动双参数解. 物理学报, 2019, 68(20): 204401. doi: 10.7498/aps.68.20190144
    [5] 陈文杰, 江俊峰, 刘琨, 王双, 马喆, 张晚琛, 刘铁根. 基于相干光时域反射型的光纤分布式声增敏传感研究. 物理学报, 2017, 66(7): 070706. doi: 10.7498/aps.66.070706
    [6] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究. 物理学报, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [7] 张毅. 非保守动力学系统Noether对称性的摄动与绝热不变量. 物理学报, 2013, 62(16): 164501. doi: 10.7498/aps.62.164501
    [8] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究. 物理学报, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [9] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌. 三维燃烧介质和壁面温度的非接触联合重建研究. 物理学报, 2012, 61(13): 134702. doi: 10.7498/aps.61.134702
    [10] 商在明, 丁志华, 王玲, 刘勇. 基于光程编码与相干合成的三维超分辨术. 物理学报, 2011, 60(12): 124204. doi: 10.7498/aps.60.124204
    [11] 张霞萍. 强非局域空间三维光孤子短程相互作用. 物理学报, 2011, 60(3): 034211. doi: 10.7498/aps.60.034211
    [12] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [13] 陆杭军, 吴锋民. 非均匀基底上三维薄膜生长的模拟研究. 物理学报, 2006, 55(1): 424-429. doi: 10.7498/aps.55.424
    [14] 孙喜明, 姚朝晖, 杨京龙. BGK方法在三维非结构网格上的初步应用. 物理学报, 2002, 51(9): 1942-1948. doi: 10.7498/aps.51.1942
    [15] 乔永芬, 李仁杰, 赵淑红. 高维增广相空间中广义力学系统的对称性和不变量. 物理学报, 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
    [16] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在. 物理学报, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [17] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅲ)──replica对称破缺解. 物理学报, 1996, 45(1): 133-139. doi: 10.7498/aps.45.133
    [18] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅰ)——稳态Replica对称近似. 物理学报, 1993, 42(3): 488-495. doi: 10.7498/aps.42.488
    [19] 张左阳, 霍裕平. 非圆截面托卡马克轴对称模的反馈稳定. 物理学报, 1986, 35(10): 1364-1368. doi: 10.7498/aps.35.1364
    [20] 周乐柱, 徐承和, 龚中麟. 旋转对称波导型开放式谐振腔的一般理论. 物理学报, 1981, 30(2): 153-163. doi: 10.7498/aps.30.153
计量
  • 文章访问数:  5786
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-06-23
  • 刊出日期:  2017-11-05

/

返回文章
返回