x

## 留言板

 引用本文:
 Citation:

## Response and resonance of bounded ocean under zonal wind forcing

Zhang Dong-Ling, Lu Xu, Zhang Ming
PDF
• #### 摘要

为揭示北太平洋主、次要气候模态即太平洋年代际振荡（PDO）和北太平洋流涡振荡（NPGO）的形成机理及其振荡周期与大洋水平尺度之间的联系，采用中纬通道中的约化重力准平衡线性大洋模型，解析求解了纬向风强迫下的大洋流场响应，讨论了其中的共振问题.1）有界大洋的响应形态分别类似于冬季PDO和NPGO的流场模.2）响应形态分别表现为在大洋西海岸以东，前者有一个椭圆状流涡，后者有南北两个旋转方向相反的流涡并构成流涡偶；在整个大洋，前者有一个洋盆尺度环流，后者在大洋南北分别有两个旋转方向相反的洋盆尺度环流；在中纬度西风急流异常位置偏北和偏南，则能分别强迫出以上的两种情况.3）大洋流场对纬向风场强迫的响应频率（周期）与纬向风强迫频率（周期）相同，但大洋响应要滞后于纬向风的强迫；而响应流场即流函数的强度则与纬向风强迫的大小成正比.当纬向风强迫频率（周期）与该大洋固有频率（周期）相同时，二者会有共振发生，此时大洋响应最为强烈；而二者频率（周期）相差较远时，响应则不大.摩擦越小共振就越强，共振的个数也越多.有界大洋东西向的长度对其固有频率（周期）即共振频率（周期）有明显影响，并起着决定作用；当该长度减小时，相邻两个共振周期的间隔会增大.海洋大气间的两两非线性相互作用，使得随机风场的振荡包含了从极低频到高频的各种成分；通过该共振，可从中挑选出与大洋固有频率相同或相近的共振频率，在该频率上流场对风场的响应最为强烈，从而也就锁定了PDO和NPGO的周期.最终结论为：非线性相互作用、风场对流场的强迫、共振是造成PDO和NPGO的三个关键因子；该解析解的性质为时变的共振Rossby波.

#### Abstract

To illustrate the formation mechanisms for the Pacific decadal oscillation (PDO) and the North Pacific gyre oscillation (NPGO) as the dominant and less dominant climate patterns of the North Pacific, and correlations between their periods of oscillation and the length of the ocean in the East-West direction, this paper adopts a mid-latitude channel linear quasi-equilibrium ocean model with reduced gravity to seek the analytical solution of the ocean flow field response to zonal wind forcing, with a special focus on resonance. Main findings include that the response pattern of the bounded ocean resembles the PDO and NPGO modes during winter respectively; specifically, to the east of the west coast of the ocean, the former is characterized by a gyre in an oval shape and the latter by two gyres rotating in opposite directions in the north and the south, constituting a gyre couple; across the entire ocean, the former features basin-wide ocean general circulation, while the latter features basin-wide general circulation in the north and the south respectively, which rotate in opposite directions. The above situations can be forced by anomalous positions of mid-latitude westerlies to the north and the south respectively. The frequency (period) of ocean flow field response to zonal wind field forcing is identical to the frequency (period) of zonal wind forcing; the response is observed after zonal wind forcing while the flow field (stream function) of the response is proportional to the zonal wind in scale. When the frequency (period) of zonal wind forcing equals that of the natural frequency (period) of the ocean, resonance will happen, with the observation of the strongest ocean response; while when the two frequencies differ by wide margins, rather small response will be observed. Smaller frictions correlate with stronger resonance along with more resonance occurrences. The length of the bounded ocean in the East-West direction has an obvious effect on the natural frequency (period), namely, the frequency (period) of resonance, and plays a decisive role in determining such a frequency; the distance between two neighboring resonance periods increases as the length is reduced. Different non-linear air-sea interactions lead to the complexity of the oscillation frequencies of a random wind field, ranging from extremely low to extremely high frequencies; through the resonance, resonance period identical or similar to the natural frequency of the ocean can be identified, at which frequency the ocean flow response to wind fields is the strongest, thus determining the periods of the PDO and NPGO. The final conclusion is that such a non-linear interaction, the effect of wind field forcing on flow field, and resonance are three key factors leading to the PDO and NPGO; the analytical solution is in nature a time-varying resonant Rossby wave.

#### 作者及机构信息

###### 通信作者: 张铭, zhangm1945@163.com
• 基金项目: 国家重点研发计划（批准号：2017YFA0604500）资助的课题.

#### Authors and contacts

###### Corresponding author: Zhang Ming, zhangm1945@163.com
• Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0604500).

#### 参考文献

 [1] Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C 1997 Bull. Amer. Meteor. Soc. 78 1069 [2] Newman M, Alexander M A, Ault T R, et al. 2016 J. Climate 29 4399 [3] Yang X Q, Zhu Y M, Xie Q, Ren X J, Xu G Y 2004 Chin. J. Atmos. Sci. 28 979 (in Chinese)[杨修群, 朱益民, 谢倩, 任雪娟, 徐桂玉 2004 大气科学 28 979] [4] Wu D X, Lin X P, Wan X Q, Lan J 2006 Acta Oceanol. Sin. 28 1 (in Chinese)[吴德星, 林霄沛, 万修全, 兰健 2006 海洋学报 28 1] [5] Sun D, Bryan F 2010 Climate Dynamics:Why does Climate Vary? (Washington DC:American Geophys Uninon Press) p123 [6] Liu 2010 Deep-Sea Res. Ⅱ 57 1098 [7] Wang S S, Guan Y P, Li Z J, Cao Y, Huang J P 2012 Acta Phys. Sin. 61 169201 (in Chinese)[王闪闪, 管玉平, Li Zhi-Jin, Cao Yi, 黄建平 2012 物理学报 61 169201] [8] Liu Q Y, Li C, Hu R J 2010 Climatic Environ. Res. 15 217 (in Chinese)[刘秦玉, 李春, 胡瑞金 2010 气候与环境研究 15 217] [9] Lorenzo E D, Schneider N, Cobb K M, Franks P, Chhak K, Miller A, Mcwilliams J, Bograd S, Arango H, Curchitser E 2008 Geophys. Res. Lett. 35 L08607 [10] Cummins P F, Lagerloef G S E, Mitchum G 2005 Geophys. Res. Lett. 32 L17607 [11] Furtado J C, Lorenzo E D, Schneider N, Bond N A 2011 J. Climate 24 3049 [12] Zhang W, Luo M 2016 Atmos. Sci. Lett. 17 437 [13] Rafter P A, Sanchez S C, Ferguson J, Carriquiry J D, Druffel E R M 2017 Quaternary Sci. Rev. 160 108 [14] Chhak K, Lorenzo E D 2009 J. Climate 22 1255 [15] Ceballos L, Lorenzo E D, Hoyos C D 2009 J. Climate 22 5163 [16] Cabanes C, Huck T, Verderee C D 2006 J. Phys. Oceanogr. 36 1739 [17] Qiu B, Chen S M 2010 Deep-Sea Res. Ⅱ. 57 1098 [18] Zhang Y C, Zhang L F 2009 Adv. Earth Sci. 24 1119 (in Chinese)[张永垂, 张立凤 2009 地球科学进展 24 1119] [19] Zhang Y C, Zhang L F, Luo Y 2010 J. Trop. Meteor. 16 51 [20] Zhang Y C, Zhang L F, Lyu Q P Lyu Q P, Zhang W F, Zhang M 2013 Climatic Environ. Res. 18 124 (in Chinese)[吕庆平, 张维锋, 张铭 2013 气候与环境研究 18 124] [21] Lyu Q P, Zhang W F, Zhang M 2013 Climatic Environ. Res. 18 124 (in Chinese) [吕庆平, 张维锋, 张铭 2013 气候与环境研究 18 124] [22] Lyu Q P, Lu X, Zhu J, Dai W H, Zhang M 2015 J. Marin. Sci. 33 1 (in Chinese)[吕庆平, 卢姁, 朱娟, 戴文灝, 张铭 2015 海洋学研究 33 1] [23] Zhang D L, Lyu Q P, Zhang L F 2015 Chin. J. Atmos. Sci. 39 692 (in Chinese)[张东凌, 吕庆平, 张立凤 2015 大气科学 39 692] [24] Lyu Q P, Lu K C, Zhang M 2013 Climatic Environ. Res. 18 210 (in Chinese)[吕庆平, 路凯程, 张铭 2013 气候与环境研究 18 210] [25] Lu K C, Yu J, Lyu Q P, Zhang M 2014 Adv. Marin. Sci. 32 467 (in Chinese)[路凯程, 于杰, 吕庆平, 张铭 2014 海洋科学进展 32 467] [26] Ding Y H, Sun Y, Liu Y Y, Si D, Wang Z Y, Zhu Y X, Liu Y J, Song Y F, Zhang J 2013 Chin. J. Atmos. Sci. 37 253 (in Chinese)[丁一汇, 孙颖, 刘芸芸, 司东, 王遵娅, 朱玉祥, 柳艳菊, 宋亚芳, 张锦 2013 大气科学 37 253] [27] Qu W Z, Huang F, Zhao J P, Jia Y L, Li C, Yue S H 2008 Oceanol. Limnol. Sin. 39 552 (in Chinese)[曲维政, 黄菲, 赵进平, 加英莱, 李春, 岳淑红 2008 海洋与湖沼 39 552]

#### 施引文献

•  [1] Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C 1997 Bull. Amer. Meteor. Soc. 78 1069 [2] Newman M, Alexander M A, Ault T R, et al. 2016 J. Climate 29 4399 [3] Yang X Q, Zhu Y M, Xie Q, Ren X J, Xu G Y 2004 Chin. J. Atmos. Sci. 28 979 (in Chinese)[杨修群, 朱益民, 谢倩, 任雪娟, 徐桂玉 2004 大气科学 28 979] [4] Wu D X, Lin X P, Wan X Q, Lan J 2006 Acta Oceanol. Sin. 28 1 (in Chinese)[吴德星, 林霄沛, 万修全, 兰健 2006 海洋学报 28 1] [5] Sun D, Bryan F 2010 Climate Dynamics:Why does Climate Vary? (Washington DC:American Geophys Uninon Press) p123 [6] Liu 2010 Deep-Sea Res. Ⅱ 57 1098 [7] Wang S S, Guan Y P, Li Z J, Cao Y, Huang J P 2012 Acta Phys. Sin. 61 169201 (in Chinese)[王闪闪, 管玉平, Li Zhi-Jin, Cao Yi, 黄建平 2012 物理学报 61 169201] [8] Liu Q Y, Li C, Hu R J 2010 Climatic Environ. Res. 15 217 (in Chinese)[刘秦玉, 李春, 胡瑞金 2010 气候与环境研究 15 217] [9] Lorenzo E D, Schneider N, Cobb K M, Franks P, Chhak K, Miller A, Mcwilliams J, Bograd S, Arango H, Curchitser E 2008 Geophys. Res. Lett. 35 L08607 [10] Cummins P F, Lagerloef G S E, Mitchum G 2005 Geophys. Res. Lett. 32 L17607 [11] Furtado J C, Lorenzo E D, Schneider N, Bond N A 2011 J. Climate 24 3049 [12] Zhang W, Luo M 2016 Atmos. Sci. Lett. 17 437 [13] Rafter P A, Sanchez S C, Ferguson J, Carriquiry J D, Druffel E R M 2017 Quaternary Sci. Rev. 160 108 [14] Chhak K, Lorenzo E D 2009 J. Climate 22 1255 [15] Ceballos L, Lorenzo E D, Hoyos C D 2009 J. Climate 22 5163 [16] Cabanes C, Huck T, Verderee C D 2006 J. Phys. Oceanogr. 36 1739 [17] Qiu B, Chen S M 2010 Deep-Sea Res. Ⅱ. 57 1098 [18] Zhang Y C, Zhang L F 2009 Adv. Earth Sci. 24 1119 (in Chinese)[张永垂, 张立凤 2009 地球科学进展 24 1119] [19] Zhang Y C, Zhang L F, Luo Y 2010 J. Trop. Meteor. 16 51 [20] Zhang Y C, Zhang L F, Lyu Q P Lyu Q P, Zhang W F, Zhang M 2013 Climatic Environ. Res. 18 124 (in Chinese)[吕庆平, 张维锋, 张铭 2013 气候与环境研究 18 124] [21] Lyu Q P, Zhang W F, Zhang M 2013 Climatic Environ. Res. 18 124 (in Chinese) [吕庆平, 张维锋, 张铭 2013 气候与环境研究 18 124] [22] Lyu Q P, Lu X, Zhu J, Dai W H, Zhang M 2015 J. Marin. Sci. 33 1 (in Chinese)[吕庆平, 卢姁, 朱娟, 戴文灝, 张铭 2015 海洋学研究 33 1] [23] Zhang D L, Lyu Q P, Zhang L F 2015 Chin. J. Atmos. Sci. 39 692 (in Chinese)[张东凌, 吕庆平, 张立凤 2015 大气科学 39 692] [24] Lyu Q P, Lu K C, Zhang M 2013 Climatic Environ. Res. 18 210 (in Chinese)[吕庆平, 路凯程, 张铭 2013 气候与环境研究 18 210] [25] Lu K C, Yu J, Lyu Q P, Zhang M 2014 Adv. Marin. Sci. 32 467 (in Chinese)[路凯程, 于杰, 吕庆平, 张铭 2014 海洋科学进展 32 467] [26] Ding Y H, Sun Y, Liu Y Y, Si D, Wang Z Y, Zhu Y X, Liu Y J, Song Y F, Zhang J 2013 Chin. J. Atmos. Sci. 37 253 (in Chinese)[丁一汇, 孙颖, 刘芸芸, 司东, 王遵娅, 朱玉祥, 柳艳菊, 宋亚芳, 张锦 2013 大气科学 37 253] [27] Qu W Z, Huang F, Zhao J P, Jia Y L, Li C, Yue S H 2008 Oceanol. Limnol. Sin. 39 552 (in Chinese)[曲维政, 黄菲, 赵进平, 加英莱, 李春, 岳淑红 2008 海洋与湖沼 39 552]
•  [1] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220566 [2] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566 [3] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801 [4] 洪梅, 张韧, 刘科峰. 基于遗传优化的西太平洋副高异常活动年份的动力预报模型反演. 物理学报, 2013, 62(7): 070505. doi: 10.7498/aps.62.070505 [5] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应. 物理学报, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303 [6] 凌超, 陈泽宇, 陈洪滨. 东经120°E中间层和低热层纬向风结构及变化特征. 物理学报, 2012, 61(24): 249201. doi: 10.7498/aps.61.0249201 [7] 李向正. Fisher方程的有界衰减振荡解. 物理学报, 2012, 61(17): 170507. doi: 10.7498/aps.61.170507 [8] 王闪闪, 管玉平, Li Zhi-Jin, Chao Yi, 黄建平. 黑潮及其延伸区海表温度变化特征与大气环流相关性的初步分析. 物理学报, 2012, 61(16): 169201. doi: 10.7498/aps.61.169201 [9] 丁佩, 周强, 胡伟琴, 蔡根旺, 梁二军. 利用电介质柱共振器实现电磁响应模式可转变的电磁超介质. 物理学报, 2011, 60(5): 054102. doi: 10.7498/aps.60.054102 [10] 罗诗裕, 李洪涛, 吴木营, 王善进, 凌东雄, 张伟风, 邵明珠. 应变超晶格系统的共振行为及其动力学稳定性. 物理学报, 2010, 59(8): 5766-5771. doi: 10.7498/aps.59.5766 [11] 牟宗信, 牟晓东, 贾莉, 王春, 董闯. 非平衡磁控溅射双势阱静电波动及其共振耦合. 物理学报, 2010, 59(10): 7164-7169. doi: 10.7498/aps.59.7164 [12] 张国锋, 卜晶晶. 共振和非共振情况下非简并双光子Tavis-Cummings模型中原子与原子之间的纠缠演化. 物理学报, 2010, 59(3): 1462-1467. doi: 10.7498/aps.59.1462 [13] 杨坤德, 马远良, 史阳. 西太平洋蒸发波导的时空统计规律研究. 物理学报, 2009, 58(10): 7339-7350. doi: 10.7498/aps.58.7339 [14] 莫嘉琪, 林万涛, 林一骅. 一个赤道太平洋西部边界潜流广义扰动机理的近似解法. 物理学报, 2007, 56(6): 3127-3131. doi: 10.7498/aps.56.3127 [15] 莫嘉琪, 林万涛. 副热带圈和赤道太平洋年代际变更的海-气振子模型解的同伦映射方法. 物理学报, 2007, 56(10): 5565-5568. doi: 10.7498/aps.56.5565 [16] 莫嘉琪, 王 辉, 林万涛, 林一骅. 赤道东太平洋SST的海-气振子模型. 物理学报, 2006, 55(1): 6-9. doi: 10.7498/aps.55.6 [17] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744 [18] 戎海武, 王向东, 徐 伟, 方 同. 有界随机噪声激励下软弹簧Duffing振子的安全盆分叉. 物理学报, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610 [19] 郑敦胜, 郭锡坤. 高激发振动态氰化氢分子的解离研究. 物理学报, 2004, 53(10): 3347-3352. doi: 10.7498/aps.53.3347 [20] 郑敦胜, 吴国祯. 分子高激发振动态的动力学特性研究. 物理学报, 2002, 51(10): 2229-2232. doi: 10.7498/aps.51.2229
• 文章访问数:  4720
• PDF下载量:  88
• 被引次数: 0
##### 出版历程
• 收稿日期:  2017-10-13
• 修回日期:  2017-12-11
• 刊出日期:  2019-04-20

/