搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于演化博弈论的行人与机动车冲突演化机理研究

魏丽英 崔裕枫 李东莹

引用本文:
Citation:

基于演化博弈论的行人与机动车冲突演化机理研究

魏丽英, 崔裕枫, 李东莹

Evolution mechanism of conflict between pedestrian and vehicle based on evolutionary game theory

Wei Li-Ying, Cui Yu-Feng, Li Dong-Ying
PDF
导出引用
  • 行人与机动车冲突时,各自都会在经过简单判断后以一定的概率选择通过.本文根据人车冲突的实际情景提出基础收益、冲突损失、等待损失以及互让损失的概念,据此构建行人与机动车的冲突博弈矩阵,并依据演化分析范式,建立人车冲突演化的动力学模型.对不同交通情形下均衡点的位置、稳定性以及系统演化机理进行深入分析,发现不同的行人与机动车的冲突损失和等待损失相对大小,对应系统的演化方向不同,可能的演化方向包括“人让车”,“车让人”,“人让车,同时车让人”以及“人不让车,车不让人”.此外,定义机会损失的交通概念,据此分析系统关于行人与机动车的互让损失以及机会损失的灵敏度,发现行人或机动车互让损失的增加对于各自通过概率有着上升促进和下降抑制作用,而机会损失的作用恰好与互让损失相反.本文建立的动力学模型可以为人车冲突演化方向的宏观调控提供理论依据.
    When pedestrian and vehicle are in conflict, they will pass at a certain probability after they have made a simple judgment respectively. According to the actual situation of the conflict between pedestrian and vehicle, the concept of basic payoff, conflict loss, waiting loss and mutual avoiding loss are put forward. A game matrix of the conflict between pedestrian and vehicle is consequently established. Then the evolutionary analysis paradigm is introduced, and the dynamic model of the conflict evolution between pedestrian and vehicle is established. After that, the position and stability of the equilibrium point and the evolution mechanism of the system in different traffic situations are analyzed in detail. It is found that the relative size between conflict loss and waiting loss of pedestrian and vehicle are different, corresponding to different evolution directions of the system. The possible evolutionary directions include “vehicles first”, “pedestrians first”, “neither vehicles nor pedestrians goes first”, “vehicles and pedestrians do not yield to each other”. In addition, in this paper, we define the traffic concept of opportunity loss, and analyze the sensitivity of the system to the mutual avoiding loss and the opportunity loss of pedestrian and vehicle. It is found that the increasing of the mutually avoiding loss of pedestrian or vehicle has a positive effect on improving the probability of each passing conflict zone, but it has a negative effect on reducing the probability of each passing conflict zone. On the other hand, the effect of opportunity loss is just the opposite to the mutual avoiding loss. The dynamic model established in this paper can provide a theoretical basis for the macro control of the conflict evolution direction between pedestrian and vehicle. For instance, the current conflict situation between pedestrian and vehicle in a city is “vehicles first”. For promoting the traffic civilization, the transportation officials hope to change the current conflict situation to realize the “pedestrians first”. According to the model established in this paper, some parameters of the game matrix on the conflict between pedestrian and vehicle can be changed by formulating relevant highway traffic regulations to adjust the evolution direction of the conflict between pedestrian and vehicle.
      通信作者: 魏丽英, lywei@bjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB725403)和国家自然科学基金(批准号:71101008,61473028)资助的课题.
      Corresponding author: Wei Li-Ying, lywei@bjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program for of China (Grant No. 2012CB725403) and the National Natural Science Foundation of China (Grant Nos. 71101008, 61473028).
    [1]

    Wardrop J G Mesterton-Gibbons M Chen O J, Ben-Akiva M E 1998 Transport. Res. Rec. 1617 179

    [2]

    Mesterton-Gibbons M 1990 Math. Comput. Model. 13 9

    [3]

    Chen O J, Ben-Akiva M E 1998 Transport. Res. Rec. 1617 179

    [4]

    Michael. G. H. Bell. 2000 Transport. Res. B:Meth. 34 533

    [5]

    Medda F 2007 Int. J. Proj. Manag. 25 213

    [6]

    Agarwal R, Ergun Ö, Houghtalen L, Ozener O O 2009 Optimization and Logistics Challenges in the Enterprise (Germany:Springer) pp373-401

    [7]

    Xie J J, Xue Y 2012 Acta Phys. Sin. 61 194502 (in Chinese) [谢积鉴, 薛郁 2012 物理学报 61 194502]

    [8]

    Wang L, Ye S Q, Xie N G 2015 Acta Phys. Sin. 64 120201 (in Chinese) [王璐, 叶顺强, 谢能刚 2015 物理学报 64 120201]

    [9]

    Nakata M, Yamauchi A, Tanimoto J, Hagishima A 2010 Physica A 389 5353

    [10]

    Sun X Y, Jiang R, Hao Q Y, Wang B H 2010 Eur. Phys. Lett. 92 18003

    [11]

    Perc M 2007 New J. Phys. 9 3

    [12]

    Alvarez I, Poznyak A 2010 International Conference on Control, Automation and System Gyeonggi-do,Korea, October 27-30, 2010 p2164

    [13]

    Li L J 2015 M. S. Thesis (Beijing:Beijing Jiaotong University) (in Chinese) [李林静 2015 硕士学位论文 (北京:北京交通大学)]

    [14]

    Du W B, Cao X B, Hu M B, Wang W X 2009 Eur. Phys. Lett. 87 60004

    [15]

    Xia H J, Li P P, Ke J H, Lin Z Q 2015 Chin. Phys. B 24 40203

    [16]

    Hao D, Rong Z H, Zhou T 2014 Chin. Phys. B 23 78905

    [17]

    Yang B, Fan M, Liu W Q, Chen X S 2017 Acta Phys. Sin. 66 196401 (in Chinese) [杨波, 范敏, 刘文奇, 陈晓松 2017 物理学报 66 196401]

    [18]

    Wang J F, Guo J L, Liu H, Shen A Z 2017 Acta Phys. Sin. 66 180203 (in Chinese) [王俊芳, 郭进利, 刘瀚, 沈爱忠 2017 物理学报 66 180203]

    [19]

    Chen C Q, Dai Q L, Han W C, Yang J Z 2017 Chin. Phys. Lett. 34 28901

    [20]

    Dou S H, Gou J Q (in Chinese) [窦水海, 苟娟琼 2015 北京交通大学学报 14 66]

  • [1]

    Wardrop J G Mesterton-Gibbons M Chen O J, Ben-Akiva M E 1998 Transport. Res. Rec. 1617 179

    [2]

    Mesterton-Gibbons M 1990 Math. Comput. Model. 13 9

    [3]

    Chen O J, Ben-Akiva M E 1998 Transport. Res. Rec. 1617 179

    [4]

    Michael. G. H. Bell. 2000 Transport. Res. B:Meth. 34 533

    [5]

    Medda F 2007 Int. J. Proj. Manag. 25 213

    [6]

    Agarwal R, Ergun Ö, Houghtalen L, Ozener O O 2009 Optimization and Logistics Challenges in the Enterprise (Germany:Springer) pp373-401

    [7]

    Xie J J, Xue Y 2012 Acta Phys. Sin. 61 194502 (in Chinese) [谢积鉴, 薛郁 2012 物理学报 61 194502]

    [8]

    Wang L, Ye S Q, Xie N G 2015 Acta Phys. Sin. 64 120201 (in Chinese) [王璐, 叶顺强, 谢能刚 2015 物理学报 64 120201]

    [9]

    Nakata M, Yamauchi A, Tanimoto J, Hagishima A 2010 Physica A 389 5353

    [10]

    Sun X Y, Jiang R, Hao Q Y, Wang B H 2010 Eur. Phys. Lett. 92 18003

    [11]

    Perc M 2007 New J. Phys. 9 3

    [12]

    Alvarez I, Poznyak A 2010 International Conference on Control, Automation and System Gyeonggi-do,Korea, October 27-30, 2010 p2164

    [13]

    Li L J 2015 M. S. Thesis (Beijing:Beijing Jiaotong University) (in Chinese) [李林静 2015 硕士学位论文 (北京:北京交通大学)]

    [14]

    Du W B, Cao X B, Hu M B, Wang W X 2009 Eur. Phys. Lett. 87 60004

    [15]

    Xia H J, Li P P, Ke J H, Lin Z Q 2015 Chin. Phys. B 24 40203

    [16]

    Hao D, Rong Z H, Zhou T 2014 Chin. Phys. B 23 78905

    [17]

    Yang B, Fan M, Liu W Q, Chen X S 2017 Acta Phys. Sin. 66 196401 (in Chinese) [杨波, 范敏, 刘文奇, 陈晓松 2017 物理学报 66 196401]

    [18]

    Wang J F, Guo J L, Liu H, Shen A Z 2017 Acta Phys. Sin. 66 180203 (in Chinese) [王俊芳, 郭进利, 刘瀚, 沈爱忠 2017 物理学报 66 180203]

    [19]

    Chen C Q, Dai Q L, Han W C, Yang J Z 2017 Chin. Phys. Lett. 34 28901

    [20]

    Dou S H, Gou J Q (in Chinese) [窦水海, 苟娟琼 2015 北京交通大学学报 14 66]

  • [1] 李盈科, 赵时, 楼一均, 高道舟, 杨琳, 何岱海. 新型冠状病毒肺炎的流行病学参数与模型. 物理学报, 2020, 69(9): 090202. doi: 10.7498/aps.69.20200389
    [2] 陈永, 张薇. 高速跟驰交通流动力学模型研究. 物理学报, 2020, 69(6): 064501. doi: 10.7498/aps.69.20191251
    [3] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [4] 王璐, 叶顺强, 谢能刚. 基于脏脸博弈模型的人车路口穿越行为研究. 物理学报, 2015, 64(12): 120201. doi: 10.7498/aps.64.120201
    [5] 徐保伟, 冯金富, 胡俊华, 刘安, 程相东. 鱼雷豚跳运动及初始转动角速度选取. 物理学报, 2015, 64(8): 084501. doi: 10.7498/aps.64.084501
    [6] 何艳生, 符师桦, 张青川. 不同加载条件下位错和溶质原子交互作用的数值模拟. 物理学报, 2014, 63(22): 228102. doi: 10.7498/aps.63.228102
    [7] 陈云祥, 陈科, 尤云祥, 胡天群. 层流圆管潜射流生成蘑菇形涡结构特性数值研究. 物理学报, 2013, 62(11): 114701. doi: 10.7498/aps.62.114701
    [8] 阮鹏, 谢冀江, 潘其坤, 张来明, 郭劲. 非链式脉冲DF化学激光器反应动力学模型. 物理学报, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [9] 唐荣荣. 一类多频激励相对转动非线性动力学模型的重正规化解. 物理学报, 2012, 61(20): 200201. doi: 10.7498/aps.61.200201
    [10] 王关德, 陈抱雪, 王平, 隋国荣, 邹林儿, 浜中广见, 矶守. 硫化砷非晶态波导光阻断效应的机理研究. 物理学报, 2011, 60(7): 074224. doi: 10.7498/aps.60.074224
    [11] 闫辉, 姜洪源, 刘文剑, Ulannov A. M.. 具有迟滞非线性的金属橡胶隔振器参数识别研究. 物理学报, 2009, 58(8): 5238-5243. doi: 10.7498/aps.58.5238
    [12] 祁春超, 左都罗, 孟凡奇, 卢彦兆, 纠智先, 程祖海. 基于光放大的长脉冲抽运太赫兹激光. 物理学报, 2009, 58(7): 4641-4646. doi: 10.7498/aps.58.4641
    [13] 谢安生, 李盛涛, 郑晓泉. 高频电压下交联聚乙烯电缆绝缘中电树枝生长的动力学模型. 物理学报, 2008, 57(6): 3828-3833. doi: 10.7498/aps.57.3828
    [14] 陈 钢, 庄德文, 张 航, 徐 军, 程 成. 差分法求解时空分布的激光动力学模型. 物理学报, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [15] 肖中银, 王廷云, 罗文芸, 王子华. 高能粒子辐照二氧化硅玻璃E′色心形成机理研究. 物理学报, 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [16] 肖中银, 罗文芸, 王廷云. 高纯硅低能粒子辐照E′色心形成动力学研究. 物理学报, 2007, 56(5): 2731-2735. doi: 10.7498/aps.56.2731
    [17] 陈 立, 毛邦宁, 王煜博, 王丽敏, 潘佰良. Sr离子自终止和复合激光交替振荡的动力学模型. 物理学报, 2007, 56(12): 6976-6981. doi: 10.7498/aps.56.6976
    [18] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [19] 陈 钢, 冯 鉴, 潘佰良, 姚志欣. Sr原子M-M跃迁激光的动力学模型. 物理学报, 2005, 54(7): 3149-3153. doi: 10.7498/aps.54.3149
    [20] 全宏俊, 汪秉宏, 杨伟松, 王卫宁, 罗晓曙. 经纪人模仿在演化少数者博弈模型中引入的自组织分离效应. 物理学报, 2002, 51(12): 2667-2670. doi: 10.7498/aps.51.2667
计量
  • 文章访问数:  7091
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2018-08-10
  • 刊出日期:  2018-10-05

/

返回文章
返回